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Stanford CS224W:
Announcements



Announcements

No class on November 7t" (Election Day)

Lectures 13 (Advanced Topics in GNNs) to 17 (Link
Prediction and Causality) will be pushed back by one
class

Lecture 18 (Frontiers of GNN Research) will be
skipped
First assighnments released on course website:
Colab O and Colab 1

Links can be found under the Schedule section of
the website
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Course Logistics: Colab o

Colab 0 will be released today by 9PM on our
course website

Colab 0:

11/14/23

Overview of NetworkX and PyTorch Geometric
Does not need to be handed in

TAs will hold a recitation session to walk you
through Colab O:

Time: Friday (09/29), 3-4pm PT

Location: Zoom, link will be posted on Ed

Session will be recorded
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Course Logistics: Colab 1

Colab 1 will be released today by 9PM on our
course website
Colab 1:

Will cover material from Lectures 1-2,
SO you can get started right away!

Due on Thursday 10/12 (2 weeks from today)
Submit written answers and code on Gradescope
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Stanford CS224W:
Node Embeddings



Recap: Traditional ML for Graphs

Given an input graph, extract node, link
and graph-level features, then learn a
model (SVM, neural network, etc.) that
maps features to labels.

Input Structured Learning Brediction

Graph Features Algorithm
Feature engineering Downstream
(node-level, edge-level, graph- prediction task

level features)
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Graph Representation Learning

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Input Structured Learning Brediction

Graph Features Algorithm
t Representation Learning -- Downstream
Engifiomgng Automatically prediction task

learn the features
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Graph Representation Learning

Goal: Efficient task-independent feature
learning for machine learning with graphs!

node vector
u >
. d
fru—->R N - Y,
Rd

Feature representation,
embedding
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Why Embedding?

Similarity of embeddings between nodes indicates
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)

Encode network information

Potentially used for many downstream predictions

Vec Tasks
* Node classification
. , « Link prediction
~ » Graph classification

. d « Anomalous node detection
embeddings R  Clustering
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Example Node Embedding

2D embedding of nodes of the Zachary’s
Karate Club network:
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Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.
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Stanford CS224W:
Node Embeddings:
Encoder and Decoder



Setup

Assume we have an (undirected) graph G:
V is the vertex set.
A is the adjacency matrix (assume binary).

For simplicity: No node features or extra
information is used

(0 1 0 1)

e 1 0O O 1

V: {1, 2,3, 4} 0 0 0 1
(1 1 1 0
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Embedding Nodes

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph
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Embedding Nodes

Goal: similarity(u,v) =~ z,z,
in the original network Similarity of the embedding

Need to define!

.Zu
\ """"""""" .Z’U
<\ /“\ encpde nodes g
\/ ——w e
ENC(v)
original network embedding space
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Learning Node Embeddings

11/14/23

Encoder maps from nodes to embeddings
Define a node similarity function (i.e., a
measure of similarity in the original network)
Decoder maps from embeddings to the
similarity score

Optimize the parameters of the encoder so
that: .

szu
similarity(u,v) =~ z.)z,

in the original network Similarity of the embedding
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Two Key Components

Encoder: maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

specifies how the
relationships in vector space map to the
relationships in the original network

similarity(u,v) = zlz, Decoder
Similarity of u and v in dot product between node

the original network embeddings
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“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

ENClv) =z,=Z v

dx|V| matrix, each column is a node
ZeR embedding [what we learn /
optimize]

) iIndicator vector, all zeroes
v el except a one in column
indicating node v
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“Shallow” Encoding

Simplest encoding approach: encoder is just an
embedding-lookup

embedding vector for a

embedding specific node
matrix

\
7 —

Dimension/size
. of embeddings

~
one column per node
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“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector
(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec
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Framework Summary

11/14/23

Shallow encoder: Embedding lookup

Parameters to optimize: Z which contains node
embeddings z,, for all nodesu € V

We will cover deep encoders in the GNNs
Decoder: based on node similarity.

Objective: maximize z.z,, for node pairs (u, v)
that are similar
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How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they...

are linked?

share neighbors?

have similar “structural roles”?
We will now learn node similarity definition that uses
random walks, and how to optimize embeddings for

such a similarity measure.
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Note on Node Embeddings

This is way of
learning node embeddings.

We are not utilizing node labels

We are not utilizing node features

The goal is to directly estimate a set of coordinates
(i.e., the embedding) of a node so that some aspect

of the network structure (captured by DEC) is
preserved.

These embeddings are

They are not trained for a specific task but can be
used for any task.
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Stanford CS224W:
Random Walk Approaches for
Node Embeddings



Notation

Vector z,;:

The embedding of node u (what we aim to find).
Probability P(v |z,,) : ¢ Our model prediction based on z,

The (predicted) probability of visiting node v on
random walks starting from node wu.

Non-linear functions used to produce predicted probabilities
Softmax function:
Turns vector of K real values (model predictizc[)i]ns) into
K probabilities that sum to 1: S(2)[i] = ZKe T
Sigmoid function:

j=1
S-shaped function that turns real values into the range of (0, 1).

Written as o(x) = 1+l-x'
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Random Walk

10
Step 3 I l Step 4 @

Step 5
\
11
Given a graph and a starting

11/14/23

Step 2 point, we select a neighbor of

Step 1 _ _
\ it at random, and move to this

neighbor; then we select a
neighbor of this point at
random, and move to it, etc.

\ The (random) sequence of
@ points visited this way is a
random walk on the graph.
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Random-Walk Embeddings

probability that u
Z;E Z, ~ and v co-OCccur on
a random walk over
the graph
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Random-Walk Embeddings

Estimate probability of visiting node v on a
random walk starting from node u using
some random walk strategy R

random walk statistics:

Similarity in embedding space (Here:
dot product=cos(8)) encodes random walk “similarity” Z;
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Why Random Walks?

Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node u
visits v with high probability, u and v are
similar (high-order multi-hop information)

Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks
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Unsupervised Feature Learning

11/1

4/23

Intuition: Find embedding of nodes in
d-dimensional space that preserves similarity

ldea: Learn node embedding such that nearby
nodes are close together in the network

Given a node u, how do we define nearby
nodes?

N (u) ... neighbourhood of u obtained by some
random walk strategy R



Feature Learning as Optimization

Given G = (I, E),
Our goal is to learn a mapping f:u — R%:

fu) =z,
Log-likelihood objective:

arg max z log P(Nr(u)| z,)
Z

uev
Ngp(u) is the neighborhood of node u by strategy R

Given node u, we want to learn feature
representations that are predictive of the nodes
in its random walk neighborhood Ny (u).

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Random Walk Optimization

Run short fixed-length random walks
starting from each node u in the graph using
some random walk strategy R.
For each node u collect Ni (u), the multiset”
of nodes visited on random walks starting
from u.
Optimize embeddings according to: Given
node u, predict its neighbors Ni (u).

arg max 2 lOg P(NR(u)l Zu) |=> Maximum likelihood
Z

objective
uev

*Nr(u) can have repeat elements since nodes can be visited multiple times on random walks
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Random Walk Optimization

Equivalently,

arnginL = Z Z —log(P(v|z,))

uevV veNg(u)

Optimize embeddings z,, to minimize
the negative log-likelihood of random walk
neighborhoods N (u).

P (U | Zu) Why softmax?
T We want node v to be
most similar to node u
P (U | Z ) = eXp (Zu ZV) (out of all nodes n).
u

Intuition: }; exp(x;) =
ZTLEV eXp (Zu Zn) max exp(x;)
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Random Walk Optimization

Putting it all together:

exp(zZ,Zy)
=2, ), sl

uevV veNg(u)

Optimizing random walk embeddings =

Finding embeddings z,, that minimize L
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Random Walk Optimization

B exp(Zy Zy)
= 2 RS ny

uevV veNg(u)

Nested sum over nodes gives
O(|V]%) complexity!
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Random Walk Optimization

exp(zZ,Zy)

72 20 " Ty

UueV veNg(u)
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Negative Sampling

Why is the approximation valid?
Technically, this is a different objective. But

SOIUtion: N egative Sa m pling Negative Sampling is a form of Noise

Contrastive Estimation (NCE) which approx.

T maximizes the log probability of softmax.
eXp (Zu ZU) New formulation corresponds to using a
_log( logistic regression (sigmoid func.) to
distinguish the target node v from nodes n;
T g g ;
ZnEV eXp Zu Zn sampled from background distribution P,.

More at https://arxiv.org/pdf/1402.3722.pdf

~ log (a(zgzv)) + Y% . log (a(—zgzni)), n;~Py

sigmoid function random distribution
(makes each term a “probability” over nOd es

between 0 and 1)

Instead of normalizing w.r.t. all nodes, just

normalize against k random “negative samples” n;
Negative sampling allows for quick likelihood calculation.
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Negative Sampling

" exp(z.z, random dist(;ibution
8( ) over nodes
ZnEV exp(zu Zn)
k
~ log (o(z]z,)) + Z log (o(~212,,)), ni~Py
1=

= Sample k negative nodes n; each with prob.
proportional to its degree.

* Two considerations for k (# negative samples):

1. Higher k gives more robust estimates
2. Higher k corresponds to higher bias on negative events

In practice k =5-20.

Can negative sample be any node or only the nodes not on the
walk? People often sample any node (for efficiency).
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Stochastic Gradient Descent

= After we obtained the objective function, how do
we optimize (minimize) it?

L=) % -logP(v]z,)

UEV veENR(U)

" Gradient Descent: a simple way to minimize L :
" |nitialize z,, at some randomized value for all nodes w.

" |terate until convergence:

. . oL . i
" For all u, compute the derivative - —. n: learning rate
u
_ 9L
1 0zy
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Stochastic Gradient Descent

= Stochastic Gradient Descent: Instead of evaluating
gradients over all examples, evaluate it for each
individual training example.

" |nitialize z,, at some randomized value for all nodes u.

" |terate until convergence: ™ = Z —log(P(v|zy))

VENR(u)

oL
0z,

= Sample a node u, for all v calculate the gradient

" For all v, update:z, « z, — n
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Random Walks: Summary

Run short fixed-length random walks starting
from each node on the graph

For each node u collect N (1), the multiset of
nodes visited on random walks starting from wu.

Optimize embeddings Z using Stochastic
Gradient Descent:

L=) > -log(P(vlz)

UueV veNg(u)
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How should we randomly walk?

= So far we have described how to optimize
embeddings given a random walk strategy R

= What strategies should we use to run these
random walks?

= Simplest idea: Just run fixed-length, unbiased
random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013)

= The issue is that such notion of similarity is too constrained

= How can we generalize this?

Reference: Perozzi et al. 2014. Deep\Walk: Online Learning of Social Representations. KDD.
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Overview of node2vec

Goal: Embed nodes with similar network
neighborhoods close in the feature space.

We frame this goal as a maximum likelihood
optimization problem, independent to the
downstream prediction task.

Key observation: Flexible notion of network

neighborhood N (u) of node u leads to rich node
embeddings

Develop biased 2" order random walk R to
generate network neighborhood Np (1) of node u

Reference: Grover et al. 2016. node?vec: Scalable Feature Learning for Networks. KDD.
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node2vec: Biased Walks

Idea: use flexible, biased random walks that can
trade off between and views of the
network (Grover and Leskovec, 2016).



https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

node2vec: Biased Walks

Two classic strategies to define a neighborhood
Ny (u) of a given node u:

Walk of length 3 (N (u) of size 3):
Nprs(u) = { 51,52,53} Local microscopic view

Nprs(u) = { s4,55,5,} Global macroscopic view
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BFS vs. DFS

BFS: DFS:
Ny () will provide N () will provide a
a micro-view of macro-view of
neighbourhood neighbourhood
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Interpolating BFS and DFS

Biased fixed-length random walk R that given a node
u generates neighborhood Ny (u)
Random walk has two parameters:
Return parameter p:
Return back to the previous node

In-out parameter q:
Moving outwards (DFS) vs. inwards (BFS) from the previous node
Intuitively, g is the “ratio” of BFS vs. DFS

Next, we specify how a single step of biased
random walk is performed.
Random walk is then just a sequence of these steps.
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One Step of the Biased Random Walk

Define the random walk by specifying the walk
transition probabilities on edges adjacent to the
current node w:

Rnd. walk just traversed edge (s;, w) and is now at w
We specify edge transition probs. out of node w

Insight: Neighbors of w can only be:

Same distance to s4

11/14/23



One Step of the Biased Random Walk

Walker came over edge (s, W) and is now at w.
How to set edge transition probabilities?

1/p,1/q,1 are
unnormalized
probabillities

p, g model transition probabilities
p ... return parameter
q ... "walk away” parameter
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One Step of the Biased Random Walk

Walker came over edge (s, W) and is at w.

How to set edge transition probabilities?

Targett Prob. Dist. (s4, 1)

w—= S]] 1 1
ss|11/q ] 2
s,11/q ] 2
Unnormalized
BFS-like walk: Low value of p transition prob.

segmented based
on distance from s;

DFS-like walk: Low value of g
N (u) are the nodes visited by the biased walk
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node2vec algorithm

1) Compute edge transition probabilities:

For each edge (s{, w) we compute edge walk
probabilities (based on p, q) of edges (w,-)
2) Simulate r random walks of length [ starting
from each node u
3) Optimize the node2vec objective using
Stochastic Gradient Descent

Linear-time complexity
All 3 steps are individually parallelizable

ure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Other Random Walk Ideas

Different kinds of biased random walks:
Based on node attributes (Dong et al., 2017).
Based on learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:

Directly optimize based on 1-hop and 2-hop random walk
probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:

Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al.

2016’s HARP).
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https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845

Summary so far

Core idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.
Different notions of node similarity:
Naive: Similar if two nodes are connected
Random walk approaches (covered today)
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Summary so far

So, what method should | use..?
No one method wins in all cases....

E.g., node2vec performs better on node classification
while alternative methods perform better on link
prediction (Goyal and Ferrara, 2017 survey).

Random walk approaches are generally more
efficient.

In general: Must choose definition of node
similarity that matches your application.
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Stanford CS224W:
Embedding Entire Graphs



Embedding Entire Graphs

Goal: Want to embed a subgraph or an entire
graph G. Graph embedding: z..

----------
......................
------
‘‘‘‘‘
-----
. L)s
e
‘e
.
.
.

/ \\u a, Z;
>
original network embedding space

Tasks:

Classifying toxic vs. non-toxic molecules
ldentifying anomalous graphs
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Simple (but effective) approach 1:

11/14

Run a standard graph embedding
technique on the (sub)graph G.
Then just sum (or average) the node
embeddings in the (sub)graph G.

ZG:ZZU

VEG

Used by Duvenaud et al., 2016 to classify
molecules based on their graph structure
/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



https://arxiv.org/abs/1509.09292

Approach 2

Approach 2: Introduce a “virtual node” to
represent the (sub)graph and run a standard
graph embedding technique

.................
------------------
........
.~
N
.~
.
“
.
.
*
.
.
.
‘e
0

/ \ ....,".ZS
|
original network embedding space

Proposed by Li et al., 2016 as a general
technique for subgraph embedding
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https://arxiv.org/abs/1511.05493

We discussed 3 ideas to graph embeddings:

Approach 1: Embed nodes and sum/avg them

Approach 2: Create super-node that spans the
(sub) graph and then embed that node.
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Preview: Hierarchical Embeddings

DiffPool: We can also hierarchically cluster
nodes in graphs, and sum/avg the node
embeddings according to these clusters.

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification
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Stanford CS224W:
Matrix Factorization and
Node Embeddings



Embeddings & Matrix Factorization

embedding vector for a
embedding specific node
matrix C

Dimension/size
of embeddings

7 =

one column per node

Objective: maximize z. z,, for node pairs (u, v) that are similar
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Connection to Matrix Factorization

Simplest node similarity: Nodes u, v are

similar if they are connected by an edge

This means: z,Z,, = A,

which is the (u, v) entry of the graph
adjacency matrix A
Therefore, Z'Z = A

- O O

—_ 0 O =

0

1
4=

0

1
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Matrix Factorization

The embedding dimension d (number of rows in Z)
is much smaller than number of nodes n.

Exact factorization A = Z'Z is generally not possible
However, we can learn Z approximately
Objective:mzin IA—Z"Z |,

We optimize Z such that it minimizes the L2 norm
(Frobenius norm) of A — Z'Z

Note today we used softmax instead of L2. But the goal to
approximate A with Z” Z is the same.

Conclusion: Inner product decoder with node
similarity defined by edge connectivity is
equivalent to matrix factorization of A.
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Random Walk-based Similarity

DeepWalk and node2vec have a more
complex node similarity definition based on

random walks

DeepWalk is equivalent to matrix
factorization of the following complex matrix
expression:

log (vol(G) (% 211(0—1/1)’”) D—l) —logh

Explanation of this equation is on the next slide.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE. and node2vec, WSDM 18
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Random Walk-based Similarity

Volume of graph

vol(G) = Z Z A; j Diagonal matrix D
L

\ Du,u = deg(u)

log (vol(G) (% Z;l(D‘lA)’”) D‘l) —logh

" S

context window size Number of
See Lec 3 slide 30: negative samples
T = |NR(u)|

Node2vec can also be formulated as a matrix
factorization (albeit a more complex matrix)
Refer to the paper for more details:

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18
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How to Use Embeddings

How to use embeddings z; of nodes:
Clustering/community detection: Cluster points z;
Node classification: Predict label of node i based on z;

Link prediction: Predict edge (i,j) based on (z;, ;)
Where we can: concatenate, avg, product, or take a difference
between the embeddings:
Concatenate: f(z;,z;)= g(|z;, z;])
Hadamard: f(z;,z;)= g(z; * z;) (per coordinate product)
Sum/Avg: f(z;,2;)= g(z; + z;)
Distance: (z;,z))= 9(I12; — zll2)
Graph classification: Graph embedding z. via aggregating
node embeddings or virtual-node.
Predict label based on graph embedding z,.
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Today’s Summary

We discussed graph representation learning, a way to
learn node and graph embeddings for downstream
tasks, without feature engineering.

Encoder-decoder framework:

Encoder: embedding lookup

Decoder: predict score based on embedding to match
node similarity

Node similarity measure: (biased) random walk
Examples: DeepWalk, Node2Vec

Extension to Graph embedding: Node embedding
aggregation
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Limitations (1)

Transductive (not inductive) method: Cannot
obtain embeddings for nodes not in the training

set. Cannot apply to new graphs, evolving graphs.

- A newly added node 5 at test time
B ‘9 (e.g., new user in a social network)

Training set

Cannot compute its embedding
with DeepWalk / node2vec. Need to
recompute all node embeddings.
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Limitation (2)

Cannot capture structural similarity:

Node 1 and 11 are structurally similar — part of one
triangle, degree 2, ...

However, they have very different embeddings.

It’s unlikely that a random walk will reach node 11 from node 1.

DeepWalk and node2vec do not capture
structural similarity.
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Limitations (3)

Cannot utilize node, edge and graph features

Feature vector
(e.g. protein properties in a
I / protein-protein interaction graph)

embeddings do not incorporate

I DeepWalk / node2vec
I such node features

Solution to these limitations: Deep Representation
Learning and Graph Neural Networks
(To be covered in depth next)
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