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¡ No class on November 7th (Election Day)
§ Lectures 13 (Advanced Topics in GNNs) to 17 (Link 

Prediction and Causality) will be pushed back by one 
class

§ Lecture 18 (Frontiers of GNN Research) will be 
skipped

¡ First assignments released on course website: 
Colab 0 and Colab 1
§ Links can be found under the Schedule section of 

the website
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¡ Colab 0 will be released today by 9PM on our 
course website

¡ Colab 0:
§ Overview of NetworkX and PyTorch Geometric
§ Does not need to be handed in
§ TAs will hold a recitation session to walk you 

through Colab 0:
§ Time: Friday (09/29), 3-4pm PT
§ Location: Zoom, link will be posted on Ed
§ Session will be recorded
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¡ Colab 1 will be released today by 9PM on our 
course website

¡ Colab 1:
§ Will cover material from Lectures 1-2, 

so you can get started right away!
§ Due on Thursday 10/12 (2 weeks from today)
§ Submit written answers and code on Gradescope
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Input 
Graph

Structured 
Features

Learning 
Algorithm  

Downstream 
prediction task

Feature engineering
(node-level, edge-level, graph-

level features)

Given an input graph, extract node, link 
and graph-level features, then learn a 
model (SVM, neural network, etc.) that 
maps features to labels.
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Input 
Graph

Structured 
Features

Learning 
Algorithm  Prediction

Downstream 
prediction task

Feature 
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates 
the need to do feature engineering every 
single time.
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Goal: Efficient task-independent feature 
learning for machine learning with graphs!
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vectornode

𝑓: 𝑢 → ℝ!

ℝ!
Feature representation, 

embedding

𝑢
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¡ Task: Map nodes into an embedding space
§ Similarity of embeddings between nodes indicates 

their similarity in the network. For example:
§ Both nodes are close to each other (connected by an edge)

§ Encode network information
§ Potentially used for many downstream predictions
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Vec

ℝ!embeddings

• Node classification
• Link prediction
• Graph classification
• Anomalous node detection
• Clustering
• ….

Tasks



¡ 2D embedding of nodes of the Zachary’s 
Karate Club network:
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Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.

https://arxiv.org/pdf/1403.6652.pdf
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¡ Assume we have an (undirected) graph G:
§ V is the vertex set.
§ A is the adjacency matrix (assume binary).
§ For simplicity: No node features or extra 

information is used
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¡ Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 1411/14/23



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

Goal:

Need to define!

11/14/23

in the original network Similarity of the embedding
similarity 𝑢, 𝑣 	≈ 	 𝐳"#𝐳$



1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a 

measure of similarity in the original network)
3. Decoder 𝐃𝐄𝐂 maps from embeddings to the 

similarity score
4. Optimize the parameters of the encoder so 

that:
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in the original network Similarity of the embedding

   
similarity 𝑢, 𝑣 	≈ 	 𝐳"#𝐳$

𝐃𝐄𝐂(𝐳!"𝐳#)



¡ Encoder: maps each node to a low-dimensional 
vector

¡ Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network
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Similarity of 𝑢 and 𝑣 in 
the original network

dot product between node 
embeddings
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Decoder

ENC 𝑣 = 𝐳!

similarity 𝑢, 𝑣 	≈ 	 𝐳"#𝐳$

node in the input graph

d-dimensional 
embedding



Simplest encoding approach: Encoder is just an 
embedding-lookup
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matrix, each column is a node 
embedding [what we learn / 
optimize]
indicator vector, all zeroes 
except a one in column 
indicating node v 
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ENC 𝑣 = 𝐳𝒗 = 𝐙 ⋅ 𝑣

𝚭 ∈ ℝ!× 𝒱

𝑣 ∈ 𝕀 𝒱



Simplest encoding approach: encoder is just an 
embedding-lookup
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Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node

11/14/23

𝐙 =



Simplest encoding approach: Encoder is just an 
embedding-lookup

Each node is assigned a unique 
embedding vector

(i.e., we directly optimize 
the embedding of each node)

Many methods: DeepWalk, node2vec
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¡ Encoder + Decoder Framework
§ Shallow encoder: Embedding lookup
§ Parameters to optimize: 𝐙 which contains node 

embeddings 𝐳' for all nodes 𝑢 ∈ 𝑉
§ We will cover deep encoders in the GNNs

§ Decoder: based on node similarity.
§ Objective: maximize 𝐳()𝐳' for node pairs (𝑢, 𝑣)

that are similar
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¡ Key choice of methods is how they define node 
similarity.

¡ Should two nodes have a similar embedding if 
they…
§ are linked?
§ share neighbors?
§ have similar “structural roles”?

¡ We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.
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¡ This is unsupervised/self-supervised way of 
learning node embeddings.
§ We are not utilizing node labels
§ We are not utilizing node features
§ The goal is to directly estimate a set of coordinates 

(i.e., the embedding) of a node so that some aspect 
of the network structure (captured by DEC) is 
preserved.

¡ These embeddings are task independent:
§ They are not trained for a specific task but can be 

used for any task.
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¡ Vector 𝐳!:
§ The embedding of node 𝑢 (what we aim to find).

¡ Probability 𝑃 𝑣 𝐳!) :
§ The (predicted) probability of visiting node 𝑣 on 

random walks starting from node 𝑢.

¡ Softmax function:
§ Turns vector of 𝐾 real values (model predictions) into 
𝐾 probabilities that sum to 1: 𝑆(𝒛)[𝑖] = "𝒛[#]

∑%&'
( "𝒛[%]

¡ Sigmoid function:
§ S-shaped function that turns real values into the range of (0, 1). 

Written as 𝜎 𝑥 = )
)*+!"

.
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Non-linear functions used to produce predicted probabilities

Our model prediction based on 𝐳# 
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Given a graph and a starting 
point, we select a neighbor of 
it at random, and move to this 
neighbor; then we select a 
neighbor of this point at 
random, and move to it, etc. 
The (random) sequence of 
points visited this way is a 
random walk on the graph.

Step 1 Step 2

Step 3 Step 4

Step 5
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probability that u 
and v co-occur on 
a random walk over 

the graph

11/14/23

𝐳!"𝐳# ≈



1. Estimate probability of visiting node 𝒗 on a 
random walk starting from node 𝒖 using 
some random walk strategy 𝑹

2. Optimize embeddings to encode these 
random walk statistics:
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Similarity in embedding space (Here: 
dot product=cos(𝜃)) encodes random walk “similarity”



1. Expressivity: Flexible stochastic definition of 
node similarity that incorporates both local 
and higher-order neighborhood information
Idea: if random walk starting from node 𝑢
visits 𝑣 with high probability, 𝑢 and 𝑣 are 
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node 
pairs when training; only need to consider 
pairs that co-occur on random walks
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¡ Intuition: Find embedding of nodes in 
𝑑-dimensional space that preserves similarity

¡ Idea: Learn node embedding such that nearby
nodes are close together in the network

¡ Given a node 𝑢, how do we define nearby 
nodes?
§ 𝑁. 𝑢 … neighbourhood of 𝑢 obtained by some 

random walk strategy 𝑅
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¡ Given 𝐺 = (𝑉, 𝐸), 
¡ Our goal is to learn a mapping 𝑓: 𝑢 → ℝ$:
𝑓 𝑢 = 𝐳%

¡ Log-likelihood objective: 

argmax
/

3
' ∈1

log P(𝑁2(𝑢)| 𝐳')

§ 𝑁$(𝑢) is the neighborhood of node 𝑢 by strategy 𝑅

¡ Given node 𝑢, we want to learn feature 
representations that are predictive of the nodes 
in its random walk neighborhood 𝑁&(𝑢).
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1. Run short fixed-length random walks 
starting from each node 𝑢 in the graph using 
some random walk strategy R.

2. For each node 𝑢 collect 𝑁&(𝑢), the multiset*
of nodes visited on random walks starting 
from 𝑢.

3. Optimize embeddings according to: Given 
node 𝑢, predict its neighbors 𝑁'(𝑢).

arg max
(

I
$ ∈*

log P(𝑁'(𝑢)| 𝐳$)
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*𝑁!(𝑢) can have repeat elements since nodes can be visited multiple times on random walks
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Maximum likelihood 
objective
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• Intuition: Optimize embeddings 𝒛$ to minimize 
the negative log-likelihood of random walk 
neighborhoods 𝑁(𝑢). 

• Parameterize 𝑃(𝑣|𝐳𝑢) using softmax:

11/14/23

Why softmax?
We want node 𝑣 to be 
most similar to node 𝑢 
(out of all nodes 𝑛).
Intuition: ∑" exp 𝑥" ≈
max
"
exp(𝑥")

𝑃 𝑣 𝐳$ =
exp(𝐳$+𝐳")

∑,∈* exp(𝐳$+𝐳,)

argmin
4
ℒ = .

5∈7

.
8∈9'(5)

−log(𝑃(𝑣|𝐳5))

Equivalently,
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Putting it all together:

sum over all 
nodes 𝑢

sum over nodes 𝑣 
seen on random 

walks starting from 𝑢

predicted probability of 𝑢 
and 𝑣 co-occuring on 

random walk

Optimizing random walk embeddings =

Finding embeddings 𝐳𝒖 	that minimize L 
11/14/23

ℒ = #
!∈#

#
	%∈&3(!)

−	log(
exp(𝐳!)𝐳%)

∑*∈# exp(𝐳!)𝐳*)
)
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But doing this naively is too expensive!

Nested sum over nodes gives 
O(|V|2)	complexity!
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ℒ = #
!∈#

#
	%∈&3(!)

−log(
exp(𝐳!)𝐳%)

∑*∈# exp(𝐳!)𝐳*)
)



ℒ = #
!∈#

#
	%∈&3(!)

−log(
exp(𝐳!)𝐳%)

∑*∈# exp(𝐳!)𝐳*)
)
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The normalization term from the softmax is 
the culprit… can we approximate it? 

11/14/23

But doing this naively is too expensive!



¡ Solution: Negative sampling

Instead of normalizing w.r.t. all nodes, just 
normalize against 𝑘 random “negative samples” 𝑛.
¡ Negative sampling allows for quick likelihood calculation.
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sigmoid function
(makes each term a “probability” 

between 0 and 1)

random distribution 
over nodes

11/14/23

Why is the approximation valid?
Technically, this is a different objective. But 
Negative Sampling is a form of Noise 
Contrastive Estimation (NCE) which approx. 
maximizes the log probability of softmax.

New formulation corresponds to using a 
logistic regression (sigmoid func.) to 
distinguish the target node 𝑣 from nodes 𝑛! 
sampled from background distribution 𝑃".

More at https://arxiv.org/pdf/1402.3722.pdf 

≈ log 𝜎 𝐳'4𝐳( + ∑5678 log 𝜎 −𝐳'4𝐳9! , 𝑛5~𝑃1

−log(
exp 𝐳'4𝐳(

∑9∈1 exp 𝐳'4𝐳9
)

https://arxiv.org/pdf/1402.3722.pdf


Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

random distribution 
over nodes

§ Sample 𝑘 negative nodes 𝑛. 	each with prob. 
proportional to its degree.

§ Two considerations for 𝑘 (# negative samples):
1. Higher 𝑘 gives more robust estimates
2. Higher 𝑘 corresponds to higher bias on negative events
In practice 𝑘 =5-20.

11/14/23

≈ log 𝜎 𝐳'4𝐳( +3
567

8
log 𝜎 −𝐳'4𝐳9! , 𝑛5~𝑃1

log(
exp 𝐳'4𝐳(

∑9∈1 exp 𝐳'4𝐳9
)

Can negative sample be any node or only the nodes not on the 
walk? People often sample any node (for efficiency).
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§ After we obtained the objective function, how do 
we optimize (minimize) it?

§ Gradient Descent: a simple way to minimize ℒ	:

§ Initialize 𝑧$ at some randomized value for all nodes 𝑢.

§ Iterate until convergence:

§ For all 𝑢, compute the derivative $ℒ
$&&

.

§ For all 𝑢, make a step in reverse direction of derivative: 𝑧# ← 𝑧# − 𝜂
$ℒ
$&&

.
11/14/23

ℒ = )
:∈<

)
=∈>$(:)

−log(𝑃(𝑣|𝐳:))

𝜂: learning rate
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§ Stochastic Gradient Descent: Instead of evaluating 
gradients over all examples, evaluate it for each 
individual training example.

§ Initialize 𝑧! at some randomized value for all nodes 𝑢.

§ Iterate until convergence:

§ Sample a node 𝑢, for all 𝑣 calculate the gradient %ℒ
(?)

%'@
.

§ For all	𝑣, update:𝑧( ← 𝑧( − 𝜂
%ℒ(?)

%'@
.

11/14/23

ℒ(#) = A
!∈*'(#)

−log(𝑃(𝑣|𝐳#))



1. Run short fixed-length random walks starting 
from each node on the graph

2. For each node 𝑢 collect 𝑁&(𝑢), the multiset of 
nodes visited on random walks starting from 𝑢.

3. Optimize embeddings 𝑍 using Stochastic 
Gradient Descent:
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We can efficiently approximate this using 
negative sampling!

11/14/23

ℒ = 0
%∈5

0
6∈7&(%)

−log(𝑃(𝑣|𝐳%))



¡ So far we have described how to optimize 
embeddings given a random walk strategy R

¡ What strategies should we use to run these 
random walks?
§ Simplest idea: Just run fixed-length, unbiased 

random walks starting from each node (i.e., 
DeepWalk from Perozzi et al., 2013)
§ The issue is that such notion of similarity is too constrained

¡ How can we generalize this?
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Reference: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.

https://arxiv.org/abs/1403.6652
https://arxiv.org/pdf/1403.6652.pdf


¡ Goal: Embed nodes with similar network 
neighborhoods close in the feature space.

¡ We frame this goal as a maximum likelihood 
optimization problem, independent to the 
downstream prediction task.

¡ Key observation: Flexible notion of network 
neighborhood 𝑁&(𝑢) of node 𝑢 leads to rich node 
embeddings

¡ Develop biased 2nd order random walk 𝑅 to 
generate network neighborhood 𝑁&(𝑢) of node 𝑢
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Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf


Idea: use flexible, biased random walks that can 
trade off between local and global views of the 
network (Grover and Leskovec, 2016).  
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ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-
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Two classic strategies to define a neighborhood 
𝑵𝑹 𝒖 of a given node 𝒖:

Walk of length 3 (𝑁& 𝑢 of size 3):
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𝑁012 𝑢 = {	𝑠3, 𝑠4, 𝑠5}

𝑁612 𝑢 = {	𝑠7, 𝑠8, 𝑠9}
Local microscopic view
Global macroscopic view
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Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-
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BFS:
𝑁&(⋅) will provide 
a micro-view of 
neighbourhood

u

DFS:
𝑁&(⋅)	will provide a 

macro-view of 
neighbourhood
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Biased fixed-length random walk 𝑹 that given a node 
𝒖 generates neighborhood 𝑵𝑹 𝒖
¡ Random walk has two parameters:

§ Return parameter 𝒑:
§ Return back to the previous node

§ In-out parameter 𝒒:
§ Moving outwards (DFS) vs. inwards (BFS) from the previous node
§ Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

¡ Next, we specify how a single step of biased 
random walk is performed. 

¡ Random walk is then just a sequence of these steps.
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Define the random walk by specifying the walk 
transition probabilities on edges adjacent to the 
current node 𝑤:

§ Rnd. walk just traversed edge (𝑠7, 𝑤) and is now at 𝒘
§ We specify edge transition probs. out of node 𝒘
§ Insight: Neighbors of 𝑤 can only be:
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Back to 𝒔𝟏

Same distance to 𝒔𝟏

Farther from 𝒔𝟏
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¡ Walker came over edge (𝐬𝟏, 𝐰) and is now at 𝐰. 
How to set edge transition probabilities?

¡ 𝑝, 𝑞 model transition probabilities
§ 𝑝 … return parameter
§ 𝑞 … ”walk away” parameter
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¡ Walker came over edge (𝐬𝟏, 𝐰) and is at 𝐰. 
How to set edge transition probabilities?

§ BFS-like walk: Low value of 𝑝
§ DFS-like walk: Low value of 𝑞

𝑁&(𝑢) are the nodes visited by the biased walk
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¡ 1) Compute edge transition probabilities:
§ For each edge (𝑠7, 𝑤) we compute edge walk 

probabilities (based on 𝑝, 𝑞) of edges (𝑤,⋅)
¡ 2) Simulate 𝑟 random walks of length 𝑙 starting 

from each node 𝑢
¡ 3) Optimize the node2vec objective using 

Stochastic Gradient Descent

¡ Linear-time complexity
¡ All 3 steps are individually parallelizable
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¡ Different kinds of biased random walks:
§ Based on node attributes (Dong et al., 2017).
§ Based on learned weights (Abu-El-Haija et al., 2017)

¡ Alternative optimization schemes:
§ Directly optimize based on 1-hop and 2-hop random walk 

probabilities (as in LINE from Tang et al. 2015).

¡ Network preprocessing techniques:
§ Run random walks on modified versions of the original 

network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al. 
2016’s HARP).
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¡ Core idea: Embed nodes so that distances in 
embedding space reflect node similarities in 
the original network.

¡ Different notions of node similarity:
§ Naïve: Similar if two nodes are connected 
§ Random walk approaches (covered today) 
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¡ So, what method should I use..?
¡ No one method wins in all cases….
§ E.g., node2vec performs better on node classification 

while alternative methods perform better on link 
prediction (Goyal and Ferrara, 2017 survey).

¡ Random walk approaches are generally more 
efficient.

¡ In general: Must choose definition of node 
similarity that matches your application.
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¡ Goal: Want  to embed a subgraph or an entire 
graph 𝐺. Graph embedding: 𝐳𝑮.

¡ Tasks:
§ Classifying toxic vs. non-toxic molecules
§ Identifying anomalous graphs
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Simple (but effective) approach 1: 
¡ Run a standard graph embedding 

technique on the (sub)graph 𝐺.
¡ Then just sum (or average) the node 

embeddings in the (sub)graph 𝐺.

¡ Used by Duvenaud et al., 2016 to classify 
molecules based on their graph structure
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¡ Approach 2: Introduce a “virtual node” to 
represent the (sub)graph and run a standard 
graph embedding technique

¡ Proposed by Li et al., 2016 as a general 
technique for subgraph embedding
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We discussed 3 ideas to graph embeddings:

¡ Approach 1: Embed nodes and sum/avg them

¡ Approach 2: Create super-node that spans the 
(sub) graph and then embed that node.
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¡ DiffPool: We can also hierarchically cluster 
nodes in graphs, and sum/avg the node 
embeddings according to these clusters.
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¡ Recall: encoder as an embedding lookup
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Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node

𝐙 =

Objective: maximize 𝐳!)𝐳$ for node pairs (𝑢, 𝑣) that are similar



¡ Simplest node similarity: Nodes 𝑢, 𝑣 are 
similar if they are connected by an edge

¡ This means: 𝐳"#𝐳$ = 𝐴$,"
which is the (𝑢, 𝑣) entry of the graph 
adjacency matrix 𝐴

¡ Therefore, 𝒁=𝒁 = 𝐴

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

1

4
3

2

×

𝒁* 𝒁

𝐳$ 𝐳!

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

0111
1000
1001
1010

A



¡ The embedding dimension 𝑑 (number of rows in 𝒁) 
is much smaller than number of nodes 𝑛.

¡ Exact factorization 𝐴 = 𝒁𝑻𝒁 is generally not possible 
¡ However, we can learn 𝒁 approximately
¡ Objective:min

𝐙
∥ A − 𝒁<𝒁 ∥=

§ We optimize 𝒁 such that it minimizes the L2 norm 
(Frobenius norm) of A − 𝒁)𝒁

§ Note today we used softmax instead of L2. But the goal to 
approximate A with 𝒁)𝒁 is the same.

¡ Conclusion: Inner product decoder with node 
similarity defined by edge connectivity is 
equivalent to matrix factorization of 𝐴.
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¡ DeepWalk and node2vec have a more 
complex node similarity definition based on 
random walks

¡ DeepWalk is equivalent to matrix 
factorization of the following complex matrix 
expression:

§ Explanation of this equation is on the next slide.
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¡ Node2vec can also be formulated as a matrix 
factorization (albeit a more complex matrix)

¡ Refer to the paper for more details:
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¡ How to use embeddings 𝒛𝒊 of nodes:
§ Clustering/community detection: Cluster points 𝒛𝒊
§ Node classification: Predict label of node 𝑖 based on 𝒛𝒊
§ Link prediction: Predict edge (𝑖, 𝑗) based on (𝒛𝒊, 𝒛𝒋)

§ Where we can: concatenate, avg, product, or take a difference 
between the embeddings:
§ Concatenate: 𝑓(𝒛( , 𝒛))= 𝑔([𝒛( , 𝒛)])
§ Hadamard: 𝑓(𝒛( , 𝒛))= 𝑔(𝒛( ∗ 𝒛)) (per coordinate product)
§ Sum/Avg: 𝑓(𝒛( , 𝒛))= 𝑔(𝒛( + 𝒛))
§ Distance: 𝑓(𝒛( , 𝒛))= 𝑔(||𝒛( − 𝒛𝒋||+)

§ Graph classification: Graph embedding 𝒛𝑮 via aggregating 
node embeddings or virtual-node. 
Predict label based on graph embedding 𝒛9.
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We discussed graph representation learning, a way to 
learn node and graph embeddings for downstream 
tasks, without feature engineering.

¡ Encoder-decoder framework:
§ Encoder: embedding lookup
§ Decoder: predict score based on embedding to match 

node similarity

¡ Node similarity measure: (biased) random walk
§ Examples: DeepWalk, Node2Vec

¡ Extension to Graph embedding: Node embedding 
aggregation
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Limitations of node embeddings via matrix 
factorization and random walks
§ Transductive (not inductive) method: Cannot 

obtain embeddings for nodes not in the training 
set. Cannot apply to new graphs, evolving graphs.
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Cannot compute its embedding 
with DeepWalk / node2vec. Need to 
recompute all node embeddings.



¡ Cannot capture structural similarity:

§ Node 1 and 11 are structurally similar – part of one 
triangle, degree 2, …

§ However, they have very different embeddings.
§ It’s unlikely that a random walk will reach node 11 from node 1.

¡ DeepWalk and node2vec do not capture 
structural similarity.
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¡ Cannot utilize node, edge and graph features
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Feature vector
(e.g. protein properties in a 
protein-protein interaction graph)

DeepWalk / node2vec 
embeddings do not incorporate 
such node features

Solution to these limitations: Deep Representation 
Learning and Graph Neural Networks
(To be covered in depth next)


