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We are going to explore Machine Learning and 
Representation Learning for graph data:
§ Methods for node embeddings: DeepWalk, Node2Vec
§ Graph Neural Networks: GCN, GraphSAGE, GAT…
§ Graph Transformers
§ Knowledge graphs and reasoning: TransE, BetaE
§ Generative models for graphs: GraphRNN
§ Graphs in 3D: Molecules
§ Scaling up to large graphs
§ Applications to Biomedicine, Science, Technology
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Date Topic Date Topic

Tue, 9/26
1. Introduction to Machine Learning 
for Graphs

Tue, 10/31 11. GNNs for Recommenders

Thu, 9/27 2. Node Embeddings Thu, 11/2
12. Deep Generative Models 
for Graphs

Tue, 10/3 3. Graph Neural Networks Tue, 11/7 13. Advanced Topics in GNNs

Thu, 10/5 4. Building blocks of GNNs Thu, 11/9 14. Graph Transformers

Tue, 10/10 5. GNN augmentation and training Tue, 11/14 15. Scaling up GNNs

Thu, 10/12 6. Theory of GNNs Thu, 11/16 16. Geometric Deep Learning

Tue, 10/17 7. Heterogenous graphs Tue, 11/28 17. Link Prediction and Causality

Thu, 10/19 8. Knowledge Graph Completion Thu, 11/30 18. Frontiers of GNN Research

Tue, 10/24 9. Complex Reasoning in KGs Tue, 12/5
19. Algorithmic reasoning with 
GNNs

Thu, 10/26 10. Fast Neural Subgraph Matching Thu, 12/7 20. Conclusion



¡ The course is self-contained.
¡ No single topic is too hard by itself.
¡ But we will cover and touch upon many topics 

and this is what makes the course hard.
§ Some background in:

§ Machine Learning
§ Algorithms and graph theory
§ Probability and statistics

§ Programming:
§ You should be able to write non-trivial programs (in Python)
§ Familiarity with PyTorch is a plus
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¡ We use PyG (PyTorch Geometric):
§ The ultimate library for Graph Neural Networks

¡ We further recommend:
§ GraphGym: Platform for designing Graph Neural 

Networks.
§ Modularized GNN implementation, simple hyperparameter 

tuning, flexible user customization

§ Both platforms are very helpful for the course project 
(save your time & provide advanced GNN 
functionalities)

¡ Other network analytics tools: SNAP.PY, NetworkX
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http://www.pyg.org/
http://www.pyg.org/


¡ The class meets Tue and Thu 3:00-4:20pm 
Pacific Time in person
§ Videos of the lectures will be recorded and posted 

on Canvas
¡ Structure of lectures:
§ ~80 minutes of a lecture

§ During this time you can ask questions

§ ~10 minutes of a live Q&A/discussion session at 
the end of the lecture
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¡ http://cs224w.stanford.edu
§ Slides posted before the class

¡ Readings:
§ Graph Representation Learning Book by 

Will Hamilton
§ Research papers

¡ Optional readings:
§ Papers and pointers to additional literature
§ This will be very useful for course projects
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http://cs224w.stanford.edu/
https://www.cs.mcgill.ca/~wlh/grl_book/


¡ Ed Discussion:
§ Access via link on Canvas
§ Please participate and help each other!

§ Don’t post code, annotate your questions, search for 
answers before you ask

§ We will post course announcements to Ed (make 
sure you check it regularly)

¡ Please don’t communicate with prof/TAs via 
personal emails, but always use:
§ cs224w-aut2324-staff@lists.stanford.edu
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¡ OHs will be both in person and virtual
§ We will have OHs every day, starting from 2nd week 

of the course
§ See http://web.stanford.edu/class/cs224w/oh.html

for Zoom links and link to QueueStatus
§ Schedule to be announced by end of week
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¡ Final grade will be composed of:
§ Homework: 20%

§ 3 written homeworks, each worth 6.67%

§ Coding assignments: 15%
§ 5 coding assignments using Google Colab, each worth 3%

§ Exam: 35%
§ Course project: 30%

§ Proposal, Milestone, and Final report

§ Extra credit: Ed participation, PyG/GraphGym code 
contribution
§ Used if you are on the boundary between grades
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¡ How to submit?
§ Upload via Gradescope

§ You will be automatically registered to Gradescope once 
you officially enroll in CS224W 

§ Homeworks, Colabs (numerical answers), and 
project deliverables are submitted on Gradescope

¡ Total of 2 Late Periods (LP) per student
§ Max 1 LP per assignment (no LP for the final report)

§ LP gives 4 extra days: assignments usually due on 
Thursday (11:59pm) à with LP, it is due the following 
Monday (11:59pm)
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¡ Homeworks (20%, n=3)
§ Written assignments take longer and take time 

(~10-20h) – start early!
§ A combination of theory, algorithm design, and math

¡ Colabs (15%, n=5)
§ We have more Colabs but they are shorter 

(~3-5h); Colab 0 is not graded.
§ Get hands-on experience coding and training GNNs; 

good preparation for final projects and industry
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¡ Single exam: Wednesday, Nov 29 (35%) 
§ Take-home, open-book, timed

§ Administered via Gradescope
§ Released at 5 PM PT on Wednesday, Nov 29, available 

until 5 AM PT on Friday, Dec 1.
§ Once you open it, you will have 120 minutes to 

complete the exam.

§ Content
§ Will have written questions (similar to Homeworks), 

Will possibly have a coding section (similar to Colabs)
§ More details to come!
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¡ Details will be posted soon:
§ Focus is on real-world applications of GNNs

¡ Logistics
§ Groups of up to 3 students

§ Groups of 1 or 2 are allowed (but discouraged); the team size 
will be taken under consideration when evaluating the scope 
of the project. But 3 person teams can be more efficient.

§ Google Cloud credits
§ We will provide $50 in Google Cloud credits to each student
§ You can also get $300 with Google Free Trial 

(https://cloud.google.com/free/docs/gcp-free-tier)

¡ Read: http://cs224w.stanford.edu/info.html

https://cloud.google.com/free/docs/gcp-free-tier
http://cs224w.stanford.edu/info.html


Assignment Due on (11:59pm PT)

Colab 0 Not graded

Colab 1 Thu, 10/12 (week 3)

Project Proposal Tue, 10/17 (week 4)

Homework 1 Thu, 10/19 (week 4)

Colab 2 Thu, 10/26 (week 5)

Homework 2 Thu, 11/2 (week 6)

Colab 3 Thu, 11/9 (week 7)

Project Milestone Thu, 11/9 (week 7)

Homework 3 Thu, 11/16 (week 8)

EXAM Wed, 11/29 5pm – Fri, 12/1 5am (week 9)

Colab 4 Thu, 11/30 (week 9)

Colab 5 Tue, 12/5 (week 10)

Project Report Thu, 12/14 (No Late Periods!)
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¡ We strictly enforce the Stanford Honor Code
§ Violations of the Honor Code include:

§ Copying or allowing another to copy from one’s own paper
§ Unpermitted collaboration
§ Plagiarism
§ Giving or receiving unpermitted aid on a take-home examination
§ Representing as one’s own work the work of another
§ Giving or receiving aid on an assignment under circumstances in 

which a reasonable person should have known that such aid was 
not permitted

§ The standard sanction for a first offense includes a one-
quarter suspension and 40 hours of community service.

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 17

Make sure you read 
and understand it!

https://communitystandards.stanford.edu/policies-and-guidance/honor-code
https://communitystandards.stanford.edu/student-conduct-process/honor-code-and-fundamental-standard/additional-resources/what-plagiarism


Two ways to ask questions during lecture:
¡ In-person (encouraged)
¡ On Ed:
§ At the beginning of class, we will open a new 

discussion thread dedicated to this lecture
§ When to ask on Ed?

§ If you have a minor clarifying question
§ If we run out of time to get to your question live
§ Otherwise, try raising your hand first!
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¡ Colabs 0 and 1 will be released on our course 
website at 3pm Thursday (9/28)

¡ Colab 0:
§ Does not need to be handed-in

¡ Colab 1:
§ Due on Thursday 10/12 (2 weeks from today)
§ Submit written answers and code on Gradescope
§ Will cover material from Lectures 1-4, but you 

can get started right away!
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Why Graphs?
Graphs are a general 

language for describing and 
analyzing entities with 
relations/interactions
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Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
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Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

https://salientnetworks.com/introductory-guide-understanding-network-infrastructure/
https://en.wikipedia.org/wiki/Food_chain
https://www.pinterest.com/pin/714524297112802250/
https://www.visitlondon.com/traveller-information/getting-around-london/london-maps-and-guides/free-london-travel-maps
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Economic Networks

Citation Networks

Communication Networks
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Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://theconversation.com/deep-learning-and-neural-networks-77259
https://missoulacurrent.com/government/2017/11/tester-net-neutrality/
https://science.sciencemag.org/content/325/5939/422
https://courses.lumenlearning.com/wmopen-introbusiness/chapter/communication-channels-flows-networks/
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Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu
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https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html


Complex domains have a rich relational 
structure, which can be represented as a

relational graph
By explicitly modeling relationships we 

achieve better performance!
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Main question:

How do we take advantage of 
relational structure for better 

prediction?
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids
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Modern 
deep learning toolbox 

is designed for 
sequences & grids
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How can we develop neural networks 
that are much more broadly 

applicable?

Graphs are the new frontier 
of deep learning

11/14/23
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Networks are complex.
¡ Arbitrary size and complex topological 

structure (i.e., no spatial locality like grids)

¡ No fixed node ordering or reference point
¡ Often dynamic and have multimodal features
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vs.

Networks Images

Text
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Peter Mary

Albert

Tom

co-worker

friendbrothers

friend

Protein 1 Protein 2
Protein 5

Protein 9

Movie 1

Movie 3
Movie 2

Actor 3

Actor 1 Actor 2

Actor 4

|N|=4
|E|=4



¡ A heterogeneous graph is defined as 
𝑮 = 𝑽, 𝑬, 𝑹, 𝑻

§ Nodes with node types 𝑣! ∈ 𝑉
§ Edges with relation types 𝑣! , 𝑟, 𝑣" ∈ 𝐸
§ Node type 𝑇 𝑣!
§ Relation type 𝑟 ∈ 𝑅
§ Nodes and edges have attributes/features
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Academic GraphsBiomedical Knowledge Graphs
Example node: ICML
Example edge: (GraphSAGE, NeurIPS) 
Example node type: Author
Example edge type (relation): pubYear

Example node: Migraine
Example edge: (fulvestrant, Treats, Breast Neoplasms) 
Example node type: Protein
Example edge type (relation): Causes



¡ How to build a graph:
§ What are nodes?
§ What are edges?

¡ Choice of the proper network representation 
of a given domain/problem determines our 
ability to use networks successfully:
§ In some cases, there is a unique, unambiguous 

representation
§ In other cases, the representation is by no means 

unique
§ The way you assign links will determine the nature 

of the question you can study
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Undirected
¡ Links: undirected 

(symmetrical, reciprocal)

¡ Other considerations:
§ Weights
§ Properties

Directed
¡ Links: directed 

§ Types
§ Attributes

11/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 36

A

B

D

C

L

MF

G

H

I

A
G

F

B
C

D

E



¡ Bipartite graph is a graph whose nodes can 
be divided into two disjoint sets U and V such that 
every link connects a node in U to one in V; that is, 
U and V are independent sets

¡ Examples:
§ Authors-to-Papers (they authored)
§ Actors-to-Movies (they appeared in)
§ Users-to-Movies (they rated)
§ Recipes-to-Ingredients (they contain)

¡ “Folded” networks:
§ Author collaboration networks
§ Movie co-rating networks
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Node level

Edge-level

Community 
(subgraph)
level

Graph-level 
prediction,
Graph 
generation





¡ Node-level prediction
¡ Link-level prediction
¡ Graph-level prediction
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? ?

?
?

?
Machine 
Learning

Node classification
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Goal: Characterize the structure and position of 
a node in the network:
§ Node degree
§ Node importance & position

§ E.g., Number of shortest paths passing through a node
§ E.g., Avg. shortest path length to other nodes

§ Substructures around
the node
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¡ Graphlets: A count vector of rooted subgraphs 
at a given node.

¡ Example:
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Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

All possible graphlets on up to 3 nodes

𝑢

𝑎 𝑏 𝑐 𝑑
Graphlets of node 𝑢: 
𝑎, 𝑏, 𝑐, 𝑑
[2,1,0,2]

Graphlet instances of node u:



Different ways to label nodes of the network:

45

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

Node features defined so 
far would allow to 

distinguish nodes in the 
above example

However, the features 
defines so far would not 

allow for distinguishing the 
above node labelling
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Computationally predict a protein’s 3D structure  
based solely on its amino acid sequence:
For each node predict its 3D coordinates
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Image credit: DeepMind

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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Image credit: DeepMind

Image credit: SingularityHub

https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://singularityhub.com/2020/12/15/deepminds-alphafold-is-close-to-solving-one-of-biologys-greatest-challenges/
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Image credit: DeepMind

¡ Key idea: “Spatial graph”
§ Nodes: Amino acids in a protein sequence
§ Edges: Proximity between amino acids (residues)

Spatial graph

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology


CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



¡ The task is to predict new/missing/unknown 
links based on the existing links.

¡ At test time, node pairs (with no existing links) 
are ranked, and top 𝐾 node pairs are predicted.

¡ Task: Make a prediction for a pair of nodes.
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Two formulations of the link prediction task:
¡ 1) Links missing at random:
§ Remove a random set of links and then 

aim to predict them
¡ 2) Links over time:
§ Given 𝐺[𝑡#, 𝑡#$ ] a graph defined by edges 

up to time 𝑡#$ , output a ranked list L
of edges (not in 𝐺[𝑡#, 𝑡#$ ]) that are 
predicted to appear in time 𝐺[𝑡%, 𝑡%$ ]

§ Evaluation:
§ n = |Enew|: # new edges that appear during 

the test period [𝑡!, 𝑡!"]
§ Take top n elements of L and count correct edges
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𝐺[𝑡!, 𝑡!" ]
𝐺[𝑡#, 𝑡#" ]
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Items

Users

¡ Users interacts with items
§ Watch movies, buy merchandise, listen to music
§ Nodes: Users and items
§ Edges: User-item interactions

¡ Goal: Recommend items users might like

11/14/23

Interactions

“You might also like”



Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings 𝑧! such that
𝑑 𝑧+,-.%, 𝑧+,-./
< 𝑑(𝑧+,-.%, 𝑧01.,2.3)

𝑧

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

11/14/23

https://arxiv.org/pdf/1806.01973.pdf


Many patients take multiple drugs to treat 
complex or co-existing diseases:

¡ 46% of people ages 70-79 take more than 5 drugs
¡ Many patients take more than 20 drugs to treat 

heart disease, depression, insomnia, etc.
Task: Given a pair of drugs predict 

adverse side effects

,

Prescribed 
drugs

Drug
side effect

30% 
prob.

65% 
prob.
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¡ Nodes: Drugs & Proteins
¡ Edges: Interactions

5511/14/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Query: How likely 
will Simvastatin and 
Ciprofloxacin, when 
taken together, 
break down muscle 
tissue?

Zitnik et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics 2018

https://arxiv.org/pdf/1802.00543.pdf


Evidence foundDrug c Drug d
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Zitnik et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics 2018

https://arxiv.org/pdf/1802.00543.pdf


CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



¡ Goal: We want make a prediction for an 
entire graph or a subgraph of the graph.

¡ For example:
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¡ a
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¡ Nodes: Road segments
¡ Edges: Connectivity between road segments
¡ Prediction: Time of Arrival (ETA)
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Predicting Time of Arrival with Graph Neural 
Networks

¡ Used in Google Maps
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


¡ Antibiotics are small molecular graphs
§ Nodes: Atoms
§ Edges: Chemical bonds
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Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

https://www.cnn.com/2019/01/24/health/antibiotic-resistance-climate-change-gbr-scli-intl/index.html
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." 
Cell 180.4 (2020): 688-702.

¡ A Graph Neural Network graph classification model
¡ Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

https://www.sciencedirect.com/science/article/pii/S0092867420301021


Physical simulation as a graph:
¡ Nodes: Particles
¡ Edges: Interaction between particles
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Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

https://arxiv.org/pdf/2002.09405.pdf


A graph evolution task:
¡ Goal: Predict how a graph will evolve over 

time
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Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

https://arxiv.org/pdf/2002.09405.pdf
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https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-
9d114460aa0c 

https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-9d114460aa0c
https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-9d114460aa0c
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Node level

Edge-level

Community 
(subgraph)
level

Graph-level 
prediction,
Graph 
generation


