Fantastic Language Models and How to Build Them

Guest Lecture — CS 224U: Natural Language Understanding Stanford || Zoom || Folks 2x-ing the Recording April 12, 2023

intelligent and interactive autonomous systems

Siddharth Karamcheti

141X(4) 5-A E, TA SEC 19) dt (E - A)(c, + c)July until to ≒(E-A) ± $\langle t|U|t_{1},t_{1}\rangle|q\rangle = \overline{2}\langle t|U|$ (1/k)>= 5 1> C(K) 1=1;6/4=0 it det

On the Importance of "Building"

Today — a *practical* take on large-scale language models (LLMs).

Whirlwind tour of the full pipeline:

- Model Architecture Evolution of the Transformer
- Training at Scale From 124M to 1T+ Parameters
- Efficient Finetuning & Inference Tips & Tricks

- **Punchline:** From "folk knowledge" —> insight / intuition / (re-)discovery!
 - Please ask lots of questions! Why is this information useful to <YOU>?

Part I: Evolution of the Transformer

"Experiment is the mother of knowledge." — Madeline L'Engle, A Wrinkle in Time

Recipe for a Good[™] Language Model

Natural to scale with data.

Composable and "general".

Fast & parallelizable training. High hardware utilization.

Massive amounts of cheap, easy to acquire data...

Minimal "assumptions" on relationships between data?

Pre-2017 — Historical Context

Reference: "Attention and Augmented Recurrent Neural Networks," Chris Olah and Shan Carter. *Distill, 2016.* **Reference**: "Convolutional Neural Networks for Text," Lena Voita. <u>ML for NLP @ YSDA</u>

RNN Key Ideas: Long Context, Attention

CNN Key Ideas:

- Layer: Multiple "Filters" (Views)
- Scaling Depth w/ Residuals
- Parallelizable!

Residual Connection

< How do I do better? >

Formulating the Self-Attention Block

Self-Attention: "The" —> query, key, & value Multi-Headed: Different "views" per layer

< Is this actually better? >

Aside — Self-Attention & Parallelization

Recurrent Neural Network

Works on **Ordered Sequences** (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence (-) Not parallelizable: need to compute hidden states sequentially

Works on **Multidimensional Grids** (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence (+) Highly parallel: Each output can be computed in parallel

< Great! But... what am I missing? >

Reference: Justin Johnson/Danfei Xu from CS 231N / DL @ GT

1D Convolution

Self-Attention

Works on **Sets of Vectors** (+) Good at long sequences: after one self-attention layer, each output "sees" all inputs! (+) Highly parallel: Each output can be computed in parallel (-) Very memory intensive

Formulating the Self-Attention Block

```
class Attention(nn.Module):
    def __init__(self, embed_dim: int, n_heads: int):
        super().__init__()
        self.n_heads, self.dk = n_heads, (embed_dim // n_heads)
        self.qkv = nn.Linear(embed_dim, 3 * embed_dim)
        self.proj = nn.Linear(embed_dim, embed_dim)
    def forward(self, x: Tensor[bsz, seq, embed_dim]):
        q, k, v = rearrange(
            self.qkv(x),
            "bsz seq (qkv nh dk) -> qkv bsz nh seq dk",
            qkv=3,
            nh=self.n_heads, # Different "views" (like CNN filters)!
            dk=self.dk,
        ).unbind(0)
        # RNN Attention --> *for each view*
        scores = torch.softmax(
            q @ (k.transpose(-2, -1)),
            dim=-1
        return self.proj(
            rearrange(scores @ v, "b nh seq dk -> b seq (nh dk)")
```


< Where's my nonlinearity? >

Expressivity & Nonlinearity

```
class ExpressiveTransformerBlock(nn.Module):
    def __init__(self, embed_dim: int, n_heads: int, up: int = 4):
        super().__init__()
        self.attn = Attention(embed_dim, n_heads)
        <u># Project *up* to high-dimension, nonlinear, compress!</u>
        self.mlp = nn.Sequential(
          nn.Linear(embed_dim, up * embed_dim),
          nn.ReLU(),
          nn.Linear(up * embed_dim, embed_dim)
    def forward(self, x: T[bsz, seq, embed_dim]):
        x = x + self.attn(x)
        x = x + self.mlp(x)
        return x
```

Residual + MLP —> "Sharpen" + "Forget"

CS 229 —> SVMs & "Implicit Lifting"

< New Problem — Activations Blow Up! >

Going Deeper —> Activation Instability


```
class NormalizedTransformerBlock(nn.Module):
    def __init__(self, embed_dim: int, n_heads: int, up: int = 4):
        super().__init__()
        self.attn = Attention(embed_dim, n_heads)
        self.mlp = nn.Sequential(
            nn.Linear(embed_dim, up * embed_dim),
           nn.ReLU(),
            nn.Linear(up * embed_dim, embed_dim)
```

<u># Add Normalization Layers</u>

self.attn_norm = nn.LayerNorm(embed_dim) self.mlp_norm = nn.LayerNorm(embed_dim)

```
def forward(self, x: T[bsz, seq, embed_dim]):
   x = self.attn_norm(x + self.attn(x))
   x = self.mlp_norm(x + self.mlp(x))
    return x
```

< And... we're done? >

Reference: "Build Better DL Models with Batch and Layer Normalization," Priva Bala — pinecone.io

independently for each sample

Layer Normalization

Well, Shucks —> Emergent Optimization Problems

< Ok but... why? >

Reference: "The Annotated Transformer," Sasha Rush. *Harvard NLP (2018)*

Learning Rate Warmup —> Breaks conventional machine learning wisdom?

3 Years Later...

< Ok, now we're done...? >

Reference: "Transformers III Training; Tricks for Training Transformers," Borealis AI — 8/6/2021. Reference: "Improving Transformer Optimization through Better Initialization," Huang et. al., ICML 2020.

3.1. Problem in Transformer Optimization

In this section we demonstrate that the requirement for warmup comes from a combined effect of high variance in the Adam optimizer and backpropagation through layer normalization. Liu et al. (2020) showed that at the begin-

of the input. Specifically, the gradient has the following property:

$$\left\|\frac{\partial \mathbf{LN}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right\| = O\left(\frac{\sqrt{d}}{||\boldsymbol{x}||}\right) \tag{1}$$

where \boldsymbol{x} is the input to layer normalization and d is the embedding dimension. If input norm ||x|| is larger than \sqrt{d} then backpropagation through layer normalization has a down scaling effect that reduces gradient magnitude for lower layers. Compounding across multiple layers this can quickly lead to gradient vanishing.

The Modern Transformer (March 2023)

self.pre_mlp_norm = <u>RMSNorm(embed_dim)</u>

def forward(self, x: T[bsz, seq, embed_dim]): x = x + self.attn(self.pre_attn_norm(x)) x = x + self.mlp(self.pre_mlp_norm(x)) return x


```
# SwishGLU -- A Gated Linear Unit (GLU) with Swish Activation
class SwishGLU(nn.Module):
    def __init__(self, in_dim: int, out_dim: int):
       super().__init__()
       self.swish = nn.SiLU()
        self.project = nn.Linear(in_dim, 2 * out_dim)
    def forward(self, x: T[bsz, seq, embed_dim]):
        projected, gate = self.project(x).tensor_split(2, dim=-1)
        return projected * self.swish(gate)
# RMSNorm -- Simple Alternative to LayerNorm
class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-8):
       super().__init__()
       self.scale, self.eps = dim**-0.5, eps
        self.g = nn.Parameter(torch.ones(dim))
    def forward(self, x: T[bsz, seq, embed_dim]):
       norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
        return x / norm.clamp(min=self.eps) * self.g
```


14

Part II: Training at Scale "Nothing in life is to be feared. It is only to be understood." - Marie Curie

Short Story — My Deep Learning Trajectory

- "Standard Pipeline": Train on 1 GPU (e.g., on Colab) —> ~max of a few hours.
- Let's train a GPT-2 Small (124M)!
 - Problem: Batch > 4 goes OOM on a decent GPU = > 12 GB of GPU RAM
 - Simple Trick —> Gradient Accumulation!
 - But... 99.63 Days to train on Single GPU (400K Steps)

GPT-2 Training Clock

Shortening the Clock —> The Scaling Toolbox

GPT-2 Training Clock

Goal: 100 Days on 1 GPU —> ~4 Days on 16 GPUs

- Data Parallelism Scaling across GPUs & Nodes
- Mixed Precision Bits, Bytes, and TensorCores
- **ZeRO Redundancy** Minimizing Memory Footprint

- **Later...** Model Parallelism Hardware Limitations Software Optimization
 - Even if you're not training big models... understanding breeds innovation!

Data Parallelism — A Toy Example

GPT-2 Training Clock


```
BATCH_SIZE = 128
class MLP(nn.Module):
   def __init__(
     self, n_classes: int = 10, mnist_dim: int = 784, hidden: int = 128
   ):
        super().__init__()
        self.mlp = nn.Sequential(
           nn.Linear(mnist_dim, hidden),
           nn.ReLU(),
           nn.Linear(hidden, hidden),
           nn.ReLU(),
           nn.Linear(hidden, n_classes)
   def forward(self, x: T[bsz, mnist_dim]):
        return self.mlp(x)
# Main Code
dataloader = DataLoader(dataset=torchvision.datasets(...), batch_size=BATCH_SIZE)
model = MLP()
# Train Loop
criterion, opt = nn.CrossEntropyLoss(), optim.AdamW(model.parameters())
for (inputs, labels) in dataloader:
    loss = criterion(model(inputs), labels)
   loss.backward(); opt.step(); opt.zero_grad()
```

99.63 D

Idea —> Parallelize?

SIMD

Single Instruction, Multiple Data

SPMD

Single Program, Multiple Data

< Seems hard? >

(Distributed) Data Parallelism — Implementation GPT-2 Training Clock

```
7.2 D — 16 GPUs w/ Data Parallelism (DDP)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
BATCH_SIZE, WORLD_SIZE = 128, 8 # World Size == # of GPUs
class MLP(nn.Module):
   def __init__(
     self, n_classes: int = 10, mnist_dim: int = 784, hidden: int = 128
   ):
       super().__init__()
       self.mlp = nn.Sequential(
           nn.Linear(mnist_dim, hidden),
           nn.ReLU(),
           nn.Linear(hidden, hidden),
           nn.ReLU(),
           nn.Linear(hidden, n_classes)
   def forward(self, x: T[bsz, mnist_dim]):
       return self.mlp(x)
# Main Code
train_set = torchvision.dataset(...)
dist_sampler = DistributedSampler(dataset=train_set)
dataloader = DataLoader(
 train_set, sampler=dist_sampler, batch_size=BATCH_SIZE // WORLD_SIZE
model = DDP(
 MLP(),
  device_ids=[os.environ["LOCAL_RANK"]],
 output_device=os.environ["LOCAL_RANK"]
```


Auto-Partitions Data across Processes

Simple Wrapper around nn.Module()

Train Loop criterion, opt = nn.CrossEntropyLoss(), optim.AdamW(model.parameters()) for (inputs, labels) in dataloader: loss = criterion(model(inputs), labels) loss.backward(); opt.step(); opt.zero_grad()

Run: `torchrun --nnodes 1 --nproc_per_node=8 main.py`

Nifty Utility —> Spawns Processes

Important — Memory Footprint of Training?

GPT-2 Training Clock

7.2 D — 16 GPUs w/ Data Parallelism (DDP)

Standard (Float 32) Memory Footprint

[Excludes Activations + Temporary Buffers]

Optimizer

Lower Bound on "Static" Memory (w/ Adam): = # Parameters * 20 Bytes

Activation Memory >> Static Memory

Reference: "ZeRO: Memory Optimizations Toward Training Trillion Parameter Models," Rajbhandari, Rasley, Ruwase, and He. SC 2020.

Training Implications

- 1B Parameters —> 18 GB (~31 GB w/ BSZ = 1)
- 175B Parameters —> 3 TB (w/o activations!)

Facts about Floating Points

- Float32 Standard defined in IEEE-754
 - Sign (1) Exponent (8) Significand (23)
 - Wide Range -> up to 1e38

< Do we need *all* 32 bits? >

Mixed Precision Training

GPT-2 Training Clock

7.2 D — 16 GPUs w/ Data Parallelism (DDP) 6.01 D — 16 GPUs w/ DDP, FP16

Mixed Precision (FP16) Memory Footprint Hmm... Optimizer Memory? [Excludes Activations + Temporary Buffers] FP16 does not mean *everything* is FP16. **Real Gain:** NVIDIA Tensor Core Speedup! 32b Parameter Copies 32b Momentum ~Adam TENSOR CORES Model 32b Variance Optimizer = # Parameters * 16 Bytes

Lower Bound on "Static" Memory (w/ Adam): Activation Memory —> halved!

Reference: "ZeRO: Memory Optimizations Toward Training Trillion Parameter Models," Rajbhandari, Rasley, Ruwase, and He. SC 2020.

99.63 D

Eliminate Redundancies —> ZeRO

GPT-2 Training Clock

7.2 D — 16 GPUs w/ Data Parallelism (DDP) 6.01 D — 16 GPUs w/ DDP, FP16

Reference: "ZeRO: Memory Optimizations Toward Training Trillion Parameter Models," Rajbhandari, Rasley, Ruwase, and He. SC 2020.

99.63 D

Alas — Hitting a (Communication) Wall

Answers:

Exploit Matrix Multiplication...

Schedule Backwards Pass Wisely...

< Harder to implement, model-specific... still miles to go! >

Problem — At some point, communication cost between nodes is too much!

Part III: Fine-Tuning and Inference

"It's such a happiness, when good people get together." – Jane Austen, Emma

24

Tools for Training —> Tools for Fine-Tuning Silver Lining — Learning to scale training —> informs *fine-tuning & inference!* ZeRO Data Parallelism Mixed Precision (FP16)

ZeRO Infinity —> CPU/NVMe Offloading

Reference: "LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale," Dettmers, Lewis, Belkada, and Zettlemoyer. NeurIPS 2022.

Mixed Precision (FP16)

Powers `llama.cpp` and more!

Teaser for Later —> Parameter-Efficient Fine-Tuning

LoRA (Low-Rank Adaptation)

Reference: <u>https://github.com/huggingface/peft</u>

...and more!

adaLN (Adapted LayerNorm)

26

That's all Folks

"This wind, it is not an ending..." - Robert Jordan, A Memory of Light

