
Fantastic Language Models and
How to Build Them

Siddharth
Karamcheti

Guest Lecture — CS 224U: Natural Language Understanding
Stanford || Zoom || Folks 2x-ing the Recording
April 12, 2023

3

On the Importance of “Building”

Today — a practical take on large-scale language models (LLMs).

Whirlwind tour of the full pipeline:

• Model Architecture — Evolution of the Transformer

• Training at Scale — From 124M to 1T+ Parameters

• Efficient Finetuning & Inference — Tips & Tricks

Punchline: From “folk knowledge” —> insight / intuition / (re-)discovery!

Please ask lots of questions! Why is this information useful to <YOU>?

4

Part I: Evolution of the Transformer

“Experiment is the mother of knowledge.”
— Madeline L’Engle, A Wrinkle in Time

5

Massive amounts of cheap, easy to acquire data…

X

… a simple, high-throughput way to consume it!

Fast & parallelizable training.

High hardware utilization.

Minimal “assumptions” on

relationships between data?

<Story Time>

Recipe for a Good™ Language Model

Natural to scale with data.

Composable and “general”.

6

Pre-2017 — Historical Context

RNNs

Reference: “Attention and Augmented Recurrent Neural Networks,” Chris Olah and Shan Carter. Distill, 2016.
Reference: “Convolutional Neural Networks for Text,” Lena Voita. ML for NLP @ YSDA

CNNs

RNN Key Ideas: Long Context, Attention

CNN Key Ideas:

• Layer: Multiple “Filters” (Views)

• Scaling Depth w/ Residuals

• Parallelizable!

Residual

Connection
< How do I do better? >

https://lena-voita.github.io/nlp_course/models/convolutional.html

7

Formulating the Self-Attention Block

Self-Attention: “The” —> query, key, & value

Multi-Headed: Different “views” per layer

< Is this actually better? >

8

Aside — Self-Attention & Parallelization

Reference: Justin Johnson/Danfei Xu from CS 231N / DL @ GT

< Great! But… what am I missing? >

9

Formulating the Self-Attention Block

< Where’s my nonlinearity? >

10

Expressivity & Nonlinearity

Residual + MLP —> “Sharpen” + “Forget”

CS 229 —> SVMs & “Implicit Lifting”

< New Problem — Activations Blow Up! >

11

Going Deeper —> Activation Instability

Layer Normalization

Reference: “Build Better DL Models with Batch and Layer Normalization,” Priya Bala — pinecone.io

< And… we’re done? >

https://www.pinecone.io/learn/batch-layer-normalization/
http://pinecone.io

12

Well, Shucks —> Emergent Optimization Problems

Typical LR Decay
[CS 221, CS 229]

Transformer Pretraining LR Schedule
Linear Warmup (5% of Training) then Decay…

Learning Rate Warmup —> Breaks conventional machine learning wisdom?

< Ok but… why? >

Reference: “The Annotated Transformer,” Sasha Rush. Harvard NLP (2018)

🤗 💥💥
💥Normalized

Transformer

13

3 Years Later…

Reference: “Transformers III Training; Tricks for Training Transformers,” Borealis AI — 8/6/2021.
Reference: “Improving Transformer Optimization through Better Initialization,” Huang et. al., ICML 2020.

< Ok, now we’re done…? >

14

The Modern Transformer (March 2023)

< Fin />

15

Part II: Training at Scale

“Nothing in life is to be feared. It is only to be understood.”
— Marie Curie

16

#
 P

ar
am

e
te

rs

0E+00

5E+06

9E+06

1E+07

2E+07

2018 (MNIST - 100K) 2019 (NLP - 1M) 2020 (Summarization - 10M) Jan 2021 (VQA - 18M)

• “Standard Pipeline”: Train on 1 GPU (e.g., on Colab) —> ~max of a few hours.

• Let’s train a GPT-2 Small (124M)!

• Problem: Batch > 4 goes OOM on a decent GPU = > 12 GB of GPU RAM

• Simple Trick —> Gradient Accumulation!

• But… 99.63 Days to train on Single GPU (400K Steps)

GPT-2 Training Clock
99.63 D

Short Story — My Deep Learning Trajectory

17

Shortening the Clock —> The Scaling Toolbox

GPT-2 Training Clock
99.63 D

Goal: 100 Days on 1 GPU —> ~4 Days on 16 GPUs

• Data Parallelism — Scaling across GPUs & Nodes

• Mixed Precision — Bits, Bytes, and TensorCores

• ZeRO Redundancy — Minimizing Memory Footprint

Later… Model Parallelism — Hardware Limitations — Software Optimization

Even if you’re not training big models… understanding breeds innovation!

18

Data Parallelism — A Toy Example
GPT-2 Training Clock

99.63 D

SIMD

Single Instruction, Multiple Data

Idea —> Parallelize?

SPMD

Single Program, Multiple Data

< Seems hard? >

19

(Distributed) Data Parallelism — Implementation
GPT-2 Training Clock

99.63 D
7.2 D — 16 GPUs w/ Data Parallelism (DDP)

Auto-Partitions Data across Processes

Simple Wrapper around nn.Module()

Nifty Utility —> Spawns Processes

20

Important — Memory Footprint of Training?

Standard (Float 32) Memory Footprint
[Excludes Activations + Temporary Buffers]

32b Parameters

32b Gradients

Model

32b Parameter Copies

32b Momentum

32b Variance

Optimizer

~Adam

Lower Bound on “Static” Memory (w/ Adam):
 = # Parameters * 20 Bytes

Activation Memory >> Static Memory

Facts about Floating Points

Training Implications

• Float32 — Standard defined in IEEE-754
- Sign (1) — Exponent (8) — Significand (23)
- Wide Range —> up to 1e38

• 1B Parameters —> 18 GB (~31 GB w/ BSZ = 1)

• 175B Parameters —> 3 TB (w/o activations!)

GPT-2 Training Clock
99.63 D

7.2 D — 16 GPUs w/ Data Parallelism (DDP)

Reference: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020.

< Do we need *all* 32 bits? >

21

Mixed Precision Training

Hmm… Optimizer Memory?

Reference: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020.

Mixed Precision (FP16) Memory Footprint
[Excludes Activations + Temporary Buffers]

16b Parameters

16b Gradients

Model

32b Parameter Copies

32b Momentum

32b Variance

Optimizer

~Adam

FP16 does not mean *everything* is FP16.

Real Gain: NVIDIA Tensor Core Speedup!

Lower Bound on “Static” Memory (w/ Adam):
 = # Parameters * 16 Bytes

Activation Memory —> halved!

GPT-2 Training Clock
99.63 D

7.2 D — 16 GPUs w/ Data Parallelism (DDP)
6.01 D — 16 GPUs w/ DDP, FP16

22

Eliminate Redundancies —> ZeRO
GPT-2 Training Clock

99.63 D
7.2 D — 16 GPUs w/ Data Parallelism (DDP)

6.01 D — 16 GPUs w/ DDP, FP16

GPU — Atomic Unit

Standard Data Parallelism ZeRO Data Parallelism
“Replicate only what you need”

Model

“Replicate everything but the data!”

GPU 1

Gradients
[Entire Model]

Optimizer States
[Entire Model]

GPU — Atomic Unit

Model

GPU 2

Gradients
[Entire Model]

Optimizer States
[Entire Model]

 = # of ParametersΨ

2 BytesΨ

2 BytesΨ

12 BytesΨ

[+ Buffers] GPU — Atomic
Unit

GPU — Atomic
Unit

Model

Gradients
[Layers 1-6]

Opt. States
[Layers 1-6]

Model

Gradients
[Layers 7-12]

Opt. States
[Layers 7-12]

GPU 1 GPU 2 W = # of GPUs

2 BytesΨ

(2 / W) BytesΨ
[+ Buffers]

(12 / W) BytesΨ

Punchline: “Shards” Memory by # of GPUs!3.37 D — 16 GPUs w/ DDP, FP16, ZeRO

Reference: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020.

23

Alas — Hitting a (Communication) Wall

Problem — At some point, communication cost between nodes is too much!

Answers:

Exploit Matrix Multiplication…

Schedule Backwards Pass Wisely…

< Harder to implement, model-specific… still miles to go! >

24

Part III: Fine-Tuning and Inference

“It’s such a happiness, when good people get together.”
— Jane Austen, Emma

25

Tools for Training —> Tools for Fine-Tuning

Silver Lining — Learning to scale training —> informs fine-tuning & inference!

ZeRO Data Parallelism

ZeRO Infinity —> CPU/NVMe Offloading

Mixed Precision (FP16)

8-Bit Quantization

Reference: “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” Dettmers, Lewis, Belkada, and Zettlemoyer. NeurIPS 2022.

Powers `llama.cpp` and more!

26

Teaser for Later —> Parameter-Efficient Fine-Tuning

Reference: https://github.com/huggingface/peft

LoRA (Low-Rank Adaptation) adaLN (Adapted LayerNorm)

…and more!

https://github.com/huggingface/peft

27

That’s all Folks!

“This wind, it is not an ending…”
— Robert Jordan, A Memory of Light

