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On the Importance of “Building”

Today — a practical take on large-scale language models (LLMs).
Whirlwind tour of the full pipeline:

e Model Architecture — Evolution of the Transformer
* Training at Scale — From 124M to 1T+ Parameters

» Efficient Finetuning & Inference — Tips & Tricks

Punchline: From "folk knowledge” —> insight / intuition / (re-)discovery!

Please asRr lots of questions! Why is this information useful to <YOU>?




Part I: Evolution of the Transformer

‘Experiment is the mother of knowledge!
— Madeline LEngle, A Wrinkle in Time



Recipe for a Good™ Language Model

Massive amounts of cheap, easy to acquire data..

X

. a simple, high-throughput way to consume it!

Natural to scale with data. Minimal "assumptions” on

Composable and "general’ relationships between data?

Fast & parallelizable training.
High hardware utilization.

<Story Time>




Pre-2017 — Historical Context
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<pad> <pad> <bos’I like the cat on a red|mat | < How do | do better? >
receptive field Connection
Reference: "Attention and Augmented Recurrent Neural Networks,” Chris Olah and Shan Carter. Distill, 2016. A

Reference: "Convolutional Neural Networks for Text,” Lena Voita. ML for NLP @ YSDA



https://lena-voita.github.io/nlp_course/models/convolutional.html

Formulating the Self-Attention Block
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class Attention(nn.Module):
def __init__(self, embed_dim: int, n_heads: int):
super().__init__()
self.n_heads, self.dk = n_heads, (embed_dim // n_heads)
self.gkv = nn.Linear(embed_dim, 3 * embed_dim)
self.proj = nn.Linear(embed_dim, embed_dim)

def forward(self, x: Tensor[bsz, seq, embed_dim]):

g, k, v = rearrange(
self.gkv(x),
"bsz seq (gkv nh dk) -> gkv bsz nh seq dk",
gkv=3,
nh=self.n_heads, # Different "views" (like CNN filters)!
dk=self.dk,

).unbind(0)

Self-Attention: "The” —> query, key, & value

Multi-Headed: Different "views’ per layer

< Is this actually better? >




Aside — Self-Attention & Parallelization

Recurrent Neural Network

Yi[— I Yo Ys [ " Va2

[

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; “"sees” the whole
sequence

(-) Not parallelizable: need to

compute hidden states sequentially

1D Convolution

Y1 Y, Y3 Ya
X1 X, X3 X,

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence

(+) Highly parallel: Each output can

be computed in parallel

Self-Attention
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t ) t
[ Product(>), sum(?) |
f

Az Az A
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_’ = AL A Aj

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each output
“sees” all inputs!

(+) Highly parallel: Each output can

be computed in parallel
(-) Very memory intensive

< Great! But... what am | missing? >

Reference: Justin Johnson/Danfeil Xu from CS 231N / DL @ GT
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class Attention(nn.Module):

def __init__(self, embed_dim: int, n_heads: int):

def

Formulating the Self-Attention Block

1 2 3 1 2 3 1 2 3
aattn aattn aattn battn battn battn Cattn Cattn Cattn

att att att att

super().__init__() ———— =TT
self.n_heads, self.dk = n_heads, (embed_dim // n_heads) \\
self.gkv = nn.Linear(embed_dim, 3 * embed_dim) e qmm

self.proj = nn.Linear(embed_dim, embed_dim) N

/
< L

forward(self, x: Tensor[bsz, seq, embed_dim]):
g, k, v = rearrange(

self.qgkv(x),
"bsz seq (gkv
gKkv=3,
nh=self.n_head
dk=self.dk,
).unbind(0)

/_|_\

/
S

nh dk) -> gkv bsz nh seq dk",

s, # Different "views" (like CNN filters)!

# RNN Attention --> *for each view*

scores = torch. sof tmax( < Where's my nonlinearity? >

g @ (k.transpo
dim=-1

)

return self.proj(
rearrange(scor

)

se(-2, -1)),

es @ v, "b nh seq dk -=> b seq (nh dk)")



Expressivity & Nonlinearity

@00 . Pl .
- ©  amg® o
class ExpressiveTransformerBlock(nn.Module): : °a"m ':.'-
def __init__(self, embed_dim: int, n_heads: int, up: int = 4): © %O =" -:-. .
super().__init__(). | o O .'.::_- o
self.attn = Attention(embed_dim, n_heads) 0® %" L Le® o
e © 5" e
O
# Project *up* to high-dimension, nonlinear, compress! & %e
self.mlp = nn.Sequential( l R
nn.Linear(embed_dim, up * embed_dim),
s CS 229 —> SVMs & "Implicit Lifting’
nn.Linear(up * embed_dim, embed_dim) 9 —> S MPLCI ITtNg
)
def forward(self, x: Tl[bsz, seq, embed_dim]): \ ) Decition surface

X = x + self.attn(x)
X = x + self.mlp(x)
return x

Residual + MLP —> "Sharpen’ + "Forget” | /%//
8000000

< New Problem — Activations Blow Up! >
10




Going Deeper —> Activation Instability

@O0 ®
class NormalizedTransformerBlock(nn.Module): 1 Bateh with 3 samples
def __init__(self, embed_dim: int, n_heads: int, up: int = 4):
super().__1init__()
self.attn = Attention(embed_dim, n_heads) KS
self.mlp = nn.Sequential( %
nn.Linear (embed_dim, up * embed_dim), fg
nn.ReLU(), G?
nn.Linear(up * embed_dim, embed_dim)
)
# Add Normalization Layers :1?2:;1@\/ :_33 ?J.T,S igg
self.attn_norm = nn.LayerNorm(embed_dim) '
self.mlp_norm = nn.LayerNorm(embed_dim)

Norwalization across ‘Pea‘tures,

bed_dim]): .
- = self.attn_norm(x + self.attn(x)) mde,penden‘tlt/ for each SO\MPle

= self.mlp_norm(x + self.mlp(x))
return Layer Normalization

def forward(self, x: TlLbsz, seq, embed_dinm

< And... we're done? >

Reference: 'Build Better DL Models with Batch and L ayer Normalization,” Priya Bala — pinecone.io 11



https://www.pinecone.io/learn/batch-layer-normalization/
http://pinecone.io

Well, Shucks —> Emergent Optimization Problems

TypicalLR Decay o %

[CS 221, CS 229] 04 - N\ A 4
o Normalized *

; T @ 100 Transformer

1.00 -
0.75 -
Transformer Pretraining LR Schedule oeo
Linear Warmup (5% of Training) then Decay.. —
0.00 -

0 200 400 600 800 1000

Learning Rate Warmup —> Breaks conventional machine learning wisdom?

< Ok but... why? >

Reference: "The Annotated Transformer,” Sasha Rush. Harvard NLP (2018)




3 Years Later..

3.1. Problem in Transformer Optimization

In this section we demonstrate that the requirement for
warmup comes from a combined effect of high variance
in the Adam optimizer and backpropagation through layer
normalization. Liu et al. (2020) showed that at the begin-

10
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lteration
lteration

90

-20 =19 -16 =18 =10

Log gradient magnitude Log Adam update magnitude
e wermee of the input. Specifically, the gradient has the following
b) d) property:
OLN d
Oz x|

where x is the input to layer normalization and d is the
embedding dimension. If input norm ||z|| is larger than
v/ d then backpropagation through layer normalization has
a down scaling effect that reduces gradient magnitude for

50

lteration
lteration

90

L - L 0 lower layers. Compounding across multiple layers this can
Log gradient magnitude Log Adam update magnitude . . . 4 .
M —— emaine quickly lead to gradient vanishing.

< Ok, now we're done...? »

Reference: "Transformers lll Training; Tricks for Training Transformers,” Borealis Al — 8/6/2021.
Reference: "Improving Transformer Optimization through Better Initialization,” Huang et. al., ICML 2020.

13



00

The Modern Transformer (March 2023)

class ModernTransformerBlock(nn.Module):

def

def

super().__init__()

__1nit__(self, embed_dim: int, n_heads: int, up: int = 4):

self.attn = Attention(embed_dim, n_heads, gk _bias=False)

self.mlp = nn.Sequential(
SwishGLU(embed _dim, up * embed_dim),
nn.Linear(up * embed_dim, embed_dim)

)

# Post-Norm --> *Pre-Norm*

self.pre_attn_norm = RMSNorm(embed_dim)
self.pre_mlp_norm = RMSNorm(embed_dim)

forward(self, x:
X = X + self.attn(self.pre_attn_norm(x))
X = x + self.mlp(self.pre_mlp_norm(x))
return x

TLbsz, seq, embed_dim]):

<FIn />

0O

# SwishGLU -- A Gated Linear Unit (GLU) with Swish Activation
class SwishGLU(nn.Module):

def

def

__init__(self, in_dim: int, out_dim: int):
super().__init__()

self.swish = nn.SiLU()

self.project = nn.Linear(in_dim, 2 * out_dim)

forward(self, x: T[bsz, seq, embed_dim]):
projected, gate = self.project(x).tensor_split(2, dim=-1)
return projected * self.swish(gate)

# RMSNorm -- Simple Alternative to LayerNorm
class RMSNorm(nn.Module):

def

def

__1init__(self, dim: int, eps: float = 1e-8):
super().__init__()
self.scale, self.eps = dim**-0.5, eps

self.g = nn.Parameter(torch.ones(dim))
forward(self, x: T[bsz, seq, embed_dim]):

norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / norm.clamp(min=self.eps) * self.g

14



Part Ill: Training at Scale

‘Nothing in life is to be feared. It is only to be understood.’
— Marie Curie

15



Short Story — My Deep Learning Trajectory

2E+07
1E+07
OE+06
-
A

OE+00
2018 (MNIST - 100K) 2019 (NLP - 1M) 2020 (Summarization - 10M) Jan 2021 (VQA - 18M)

# Parameters

‘Standard Pipeline”: Train on 1 GPU (e.g., on Colab) —> ~max of a few hours.

et's train a GPT-2 Small (124M)!
* Problem: Batch > 4 goes OOM on a decent GPU = > 12 GB of GPU RAM
o Simple Trick —> Gradient Accumulation!
« But.. 99.63 Days to train on Single GPU (400K Steps)

GPT-2 Training Clock

- Kele}skhD.
10




Shortening the Clock —> The Scaling Toolbox

GPT-2 Training Clock
T 9963 D

Goal: 100 Days on 1 GPU —> ~4 Days on 16 GPUs

* Data Parallelism — Scaling across GPUs & Nodes
* Mixed Precision — Bits, Bytes, and TensorCores

 ZeRO Redundancy — Minimizing Memory Footprint

Later.. Model Parallelism — Hardware Limitations — Software Optimization

Even if you're not training big models.. understanding breeds innovation!

1/



Data Parallelism — A Toy Example

GPT-2 Training Clock
T g9.o3 D

0O

ldea —> Parallelize?

BATCH_SIZE = 128

class MLP(nn.Module):
def __init__(
self, n_classes: int = 10, mnist_dim: int = 784, hidden: int = 128 SlMD
):
super().__init__() . . .
self.mlp = nn.Sequential( S|ngle |nStFUCtIOn, MUl.t|pl.e Data
nn.Linear(mnist_dim, hidden),
nn.ReLU(),
nn.Linear(hidden, hidden),
nn.ReLU(),
nn.Linear(hidden, n_classes)

)

def forward(self, x: T[bsz, mnist_dim]):

return self.mlp(x) SPMD

# Main Code

dataloader = Dataloader(dataset=torchvision.datasets(...), batch_size=BATCH_SIZE) S|ngle Program, MUI.t|p'.e Data

model = MLP()

# Train Loop
criterion, opt = nn.CrossEntropylLoss(), optim.AdamW(model.parameters())
for (inputs, labels) in dataloader:

loss = criterion(model(inputs), labels) < Seems hard? >

loss.backward(); opt.step(); opt.zero_grad()

13



(Distributed) Data Parallelism — Implementation

GPT-2 Training Clock
- |gele}ekcED
72 D — 16 GPUs w/ Data Parallelism (DDP)

@00

from torch.nn.parallel import DistributedDataParallel as DDP

from torch.utils.data.distributed import DistributedSampler AutO— :)a rt|t|OnS Data adACross DrOCGSSGS

BATCH_SIZE, WORLD_SIZE = 128, 8 # World Size == # of GPUs
class MLP(nn.Module):
def __init__(
self, n_classes: int = 10, mnist_dim: int = 784, hidden: int = 128

):

Simple Wrapper around nn.Module()

super().__init__()

self.mlp = nn.Sequential(
nn.Linear(mnist_dim, hidden),
nn.ReLU(),
nn.Linear(hidden, hidden),
nn.ReLU(),
nn.Linear (hidden, n_classes)

)

def forward(self, x: T[bsz, mnist_dim]):
return self.mlp(x)

# Train Loop

criterion, opt = nn.CrossEntropylLoss(), optim.AdamW(model.parameters())
for (inputs, labels) in dataloader:

loss = criterion(model(inputs), labels)

# Main Code loss.backward(); opt.step(); opt.zero_grad()

train_set = torchvision.dataset(...)
dist_sampler = DistributedSampler(dataset=train_set)
dataloader = DatalLoader(

train_set, sampler=dist_sampler, batch_size=BATCH E // WORLD_SIZE

# Run: ‘torchrun --nnodes 1 —--nproc_per_node=8 main.py'

)

model = DDP(
MLP(),
device_ids=[os.environ["LOCAL_RANK" 1],
output_device=os.environ["LOCAL_RANK" ]

)

Nifty Utility —> Spawns Processes




Important — Memory Footprint of Training?

Standard (Float 32) Memory Footprint Training Implications
[Excludes Activations + Temporary Buffers] . 1B Parameters —> 18 GB (~31 GBw/ BSZ = 1)
é ) g W\ . .
22b Parameters [32b Parameter Copies + 175B Parameters —> 3 TB (w/0 activations!)
f b Gradient ) ——(32b Momentum1 : :
_ sebradents -Adam| > < Facts about Floating Points
Model ~| 32bVariance . Float32 — Standard defined in IEEE-754
\_ . : — : :
— - Sign (1) — Exponent (8) — Significand (23)
Optimizer - Wide Range —> up to 1e338

Lower Bound on “Static® Memory (w/ Adam):
- # Parameters " 20 Bytes

Activation Memory >> Static Memory

< Do we need *all® 32 bits? »

Reference: "ZeRO:. Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020.

20



Mixed Precision Training
GPT-2 Training Clock
. Nele}okchb
7.2 D — 16 GPUs w/ Data Parallelism (DDP)
6.01 D — 16 GPUs w/ DDP, FP16

Mixed Precision (FP16) Memory Footprint Hmm... Optimizer Memory?
[Excludes Activations + Temporary Buffers]

FP16 does not mean “everything” is FP16.

4 )

N
[ 16b Parameters J [32b Parameter Copies Real Gain: NVIDIA Tensor Core Speedup!
[ )
[ 16b Gradients ] —| 32b Momentum
~Adam > < TENSOR CORES
Model —| 32b Variance
- - JJ
Optimizer

Lower Bound on “Static® Memory (w/ Adam):
- # Parameters " 16 Bytes

Activation Memory —> halved!

Reference: "ZeRO:. Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020. 21




Eliminate Redundancies —> ZeRO

GPT-2 Training Clock
- |gele}ekcED
7.2 D — 16 GPUs w/ Data Parallelism (DDP)
6.01 D — 16 GPUs w/ DDP, FP16

Bl 337D — 16 GPUs w/ DDP, FP16, ZeRO  Punchline: "Shards” Memory by # of GPUs!

Standard Data Parallelism ZeRO Data Parallelism
"Replicate everything but the datal” "Replicate only what you need”
a N\ ™) ~ N\ (O R
2Y Bytes [ Model j [ Model J [ Model ] [ Model J 2¥ Bytes
Gradients Gradients Gradients Gradients
[Entire Model] [Entire Model]
a ) ( ) 4 ) é )
Optimizer States Optimizer States Opt. States Opt. States
12} Bytes [Entire Model] [Entire Model] [Layers 1-6] [Layers 7-12] (12¥ /7 W) Bytes
Lk JJ LL JJ Lk JJ Lk JJ
GPU 1 GPU 2 GPU 1 GPU 2 W = # of GPUs

Y - # of Parameters

Reference: "ZeRO:. Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020. 22




Alas — Hitting a (Communication) Wall

Problem — At some point, communication cost between nodes is too much!
Answers:

lllllllllllllll
||||||||||

|||||||||||||||
||||||||||

v (2,5) w (5,8)

—xploit Matrix Multiplication..

|||||||||||||||
llllllllll

out (4,8)

x1 (2,5) w (5,8) out, (2,8)

Device 1
Device 2
: Device 3
Schedule Backwards Pass Wisely.. Device 4
Time Devices idle
B Forward Pass Backward Pass

< Harder to implement, model-specific... still miles to go! >

23




Part lll: Fine-Tuning and Inference

‘It's such a happiness, when good people get together.”
— Jane Austen, Emma

24



Tools for Training —> Tools for Fine-Tuning

Silver Lining — Learning to scale training —> informs fine-tuning & inference!

ZeRO Data Parallelism Mixed Precision (FP16)

! !

ZeRO Infinity —> CPU/NVMe Offloading 8-Bit Quantization

InfiniBand Network

1
. Foree E (1) Find vector-wise constants: Cw& Cx (2) Quantize (4) Dequantize E
: X * (127/C,) = X i
Backward . X 1 2 —— F16( ICy) 18 Out * (C,&®C.,, ) i
® Update : 2[2[1]4 o] W W * (127/Cy) = W 2 __*__W___out_ |
: t16 w = W 127*127 F16 1
: 3|0(3]2 0|2 ;
E 1[-1]-1]0 | -1]2 oy (3) Int8 Matmul E
’ All-gather of parameters 2 [45]-1117)-1 110 : T W X W = Out i
X o T2l Teal 2 2o C I8 18 132
1[37]-1fe3 0 0[-2 \,\l X
@  Compute activations F £ 2 22
1|2
FP16

16-bit Decomposition
L_) b (1) Decompose outliers  (2) FP16 Matmul i
' :
1 — 1
i 25117 \zN - XF16 WF16_ OUtFlﬁ 1 Out
' H FP16
[] Regular values ; X ;3 ::z 32 E
[] Outliers ; F16 Fie ;

Layer 0 Activation

Layer 1 et Powers llama.cpp and more!

Layer 2

Reference: "LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” Dettmers, Lewis, Belkada, and Zettlemoyer. NeurlPS 2022, 25




Teaser for Later —> Parameter-Efficient Fine-Tuning

& PEFT

Parameter-Efficient Fine-Tuning

4 I
// —_—
. / Scale <a—2
Noise ) // i
Pointwise
32 x iZ x4 32 x iZ x4 // Feedforward
. 1 / ! y ’ﬂ

Linear and Reshape T —=—2

Pretrained . e scl, s

. Layer Norm
We |g hts Layer Norm // .
| / . @ .and more!
N x DiT Block a
W e R4 T
| J \\ Multi-Head
Patchify Embed \ Self-Attention
|
I | \\ Scale, Shift ﬁ

Noised Timestep ¢ \\ Layer Norm MLP
Latent ' \ ! |
32x32x4 Label y \ \_ Input Tokens Conditioning /

LoRA (Low-Rank Adaptation) adaLN (Adapted LayerNorm)

Reference: https.//github.com/huggingface/peft



https://github.com/huggingface/peft

That's all Folks!

“This wind, it Is not an ending..’
— Robert Jordan, A Memory of Light

2/



