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Early precedents

• In the pre-deep learning era, n-gram LMs were
often massive! Brants et al. (2007) use a 300B
parameter model trained on 2 trillion tokens.
• decaNLP (McCann et al. 2018): Multi-task training
with task instructions as natural language
questions.
• Radford et al. (2018): Some tentative prompt-based
experiments with GPT.
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Beginnings: Radford et al. 2019 (GPT-2)
• “We demonstrate language models can perform down-stream
tasks in a zero-shot setting – without any parameter or
architecture modification.”
• “To induce summarization behavior we add the text TL;DR:
after the article and generate 100 tokens”
• “We test whether GPT-2 has begun to learn how to translate
from one language to another. In order to help it infer that this
is the desired task, we condition the language model on a
context of example pairs of the format english sentence =
french sentence and then after a final prompt of english
sentence = we sample from the model with greedy decoding
and use the first generated sentence as the translation.”
• “Similar to translation, the context of the language model is
seeded with example question answer pairs which helps the
model infer the short answer style of the dataset.”’
• Also evaluated: text completion, Winograd schemas, reading
comprehension.
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Cultural moment: Brown et al. 2020 (GPT-3)

“Here we show that scaling up language models greatly improves
task-agnostic, few-shot performance, sometimes even reaching
competitiveness with prior state-of-the-art fine-tuning approaches.
Specifically, we train GPT-3, an autoregressive language model with
175 billion parameters, 10x more than any previous non-sparse
language model, and test its performance in the few-shot setting.
For all tasks, GPT-3 is applied without any gradient updates or
fine-tuning, with tasks and few-shot demonstrations specified
purely via text interaction with the model. GPT-3 achieves strong
performance on many NLP datasets, including translation,
question-answering, and cloze tasks, as well as several tasks that
require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or
performing 3-digit arithmetic. At the same time, we also identify
some datasets where GPT-3’s few-shot learning still struggles, as
well as some datasets where GPT-3 faces methodological issues
related to training on large web corpora.”
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Terminology

• In-context learning: A frozen LM performs a task only by
conditioning on the prompt text.

• Few-shot in-context learning: (1) The prompt includes examples of
the intended behavior, and (2) no examples of the intended
behavior were seen in training.
É We are unlikely to be able to verify (2).
É “Few-shot” is also used in supervised learning with the sense

of “training on few examples”. The above is different.

• Zero-shot in-context learning: (1) The prompt includes no examples
of the intended behavior (but it can contain other instructions), and
(2) no examples of the intended behavior were seen in training.
É We are unlikely to be able to verify (2).
É Formatting and other instructions seem like a gray area, but

we will allow them in this category.
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GPT: Autoregressive loss function

For vocabulary V, sequence x = [x1, . . . , xT ], and
word-level embedding e:

max
θ

T
∑

t=1

log
exp
�

e(xt)>hθ(x1:t−1)
�

∑

x′∈V exp
�

e(x′)>hθ(x1:t−1)
�

for model parameters hθ.
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Autoregressive training with teacher forcing
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Generation
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A question

Do autoregressive LMs simply predict the next token?

1. Yes, that is all they do.

2. Well, they predict scores over the entire vocabulary
at each step. We then use those scores to compel
them to predict some token or other.

3. And, actually, they also represent data in their
internal and output representations.

4. But, on balance, saying they simply predict the
next token might be best in terms of science
communication with the public.
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A uniform mechanism

1. Better late than _________

2. Every day, I eat breakfast, lunch, and _________

3. The President of the U.S. is _________

4. The key to happiness is _________
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Instruction fine-tuning
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Data used for self-supervision

1. OpenBookCorpus (Bandy and Vincent 2021):
https://huggingface.co/datasets/bookcorpusopen

2. The Pile (Gao et al. 2020):
https://pile.eleuther.ai

3. Big Science Data (Laurençon et al. 2022):
https://huggingface.co/bigscience-data

4. Wikipedia processing:
https://github.com/attardi/wikiextractor

5. Pushshift Reddit Data (Baumgartner et al. 2020):
https://files.pushshift.io/reddit/

6. Colossal Clean Crawled Corpus (C4; Dodge et al. 2021)
https://github.com/allenai/allennlp/discussions/5056
WaPo: Inside the secret list of websites that make AI like
ChatGPT sound smart
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Data used for instruction fine-tuning

• We don’t know much about what the industrial labs
are doing here.
• We can infer that they are paying lots of people to
generate Instruct data.
• We can also infer that they are using their own
models to generate examples and adjudicate
between examples.
• The Stanford Human Preferences Dataset (SHP) is a
resource for naturalistic Instruct-tuning:
https://huggingface.co/datasets/stanfordnlp/SHP
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Self-instruct
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Self-instruct prompt templates

Step 1: Instruction generation Step 2: Classification task
identification

Step 3: Classification tasks Step 3: Non-classification tasks
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Alpaca

Link to the modified self-instruct procedure
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https://crfm.stanford.edu/2023/03/13/alpaca.html
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Model sizes go up up up
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Model sizes may be coming down

22 /38



Origins Core concepts The current moment Techniques Suggested methods

Techniques

23 /38



Origins Core concepts The current moment Techniques Suggested methods

Demonstrations

Context: Kermit is one of the
stars of Sesame Street.

Train/Retrieve

Q: Who is Kermit? Train

A: Kermit is the one of the
stars of Sesame Street.

Train/Retrieve/Generate

Context: Bert is a Muppet who
lives with Ernie.

Retrieve

Q: Who is Bert? Given

A: Bert is a Muppet. Predicted
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Choosing demonstrations
1. Randomly chosen from available data.

2. Chosen based on relationship to the target example.
É Generation: Retrieved based on similarity to the target input.
É Classification: Chosen to help the model implicitly determine

the target input type.

3. Filtered to those that satisfy specific criteria:
É Generation: The evidence contains the output.
É Generation: The LM predicts the correct output.
É Classification: Every label represented.

4. Sampled and then rewritten by the LM:
É Synthesize multiple initial demonstrations into individual

demonstrations.
É Change style or formatting to match the target.

Something to get used to: Your prompt might contain substrings that
were generated by a different prompt to your LM.
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Example from Assignment 2

Context: ELMo is an LSTM
for contextual reps.

Q: Who is ELMo?

A: ELMo is a friendly
monster

Context: Bert is a Muppet
who lives with Ernie.

Q: Who is Bert?

A:

Context: The Grover model
detects fake news.

Q: What is Grover?

A: Grover is an LLM

Context: ELMo is an LSTM
for contextual reps

Q: Who is ELMo?

A: ELMo is an LSTM 7
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Example from Assignment 2

Context: Bert and Ernie are
best friends.

Q: Who is Ernie?

A: Ernie is Bert’s best
friend.

Context: Bert is a Muppet
who lives with Ernie.

Q: Who is Bert?

A: Bert is a Muppet.

Context: Big Bird is a
giant yellow bird.

Q: Who is Big Bird?

A: Big Bird is a Muppet bird

Context: Bert and Ernie are
best friends.

Q: Who is Ernie?

A: Ernie is Bert’s friend Ø
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Chain of Thought
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Generic step-by-step with instructions
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Self-Consistency
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Wang et al. 2022a;
See also Retrieval Augmented Generation (RAG; Lewis et al. 2020)
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Self-Consistency in DSP

1 import dsp
2
3 @dsp.transformation
4 def predict_with_sc(example):
5 generator = dsp.generate(qa_template, n=20, temperature=0.7)
6 example, compl = generator(example, stage=’qa’)
7 compl = dsp.majority(compl)
8 return example.copy(answer=completions.answer)
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Self-Ask

Self-Ask can be combined with
retrieval for answering the inter-
mediate questions.
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Press et al. 2022
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Iterative rewriting
1 @dsp.transformation
2 def multihop_search_v2(example, max_hops=3):
3 example.hops = []
4 generator = dsp.generate(hop_template)
5 for hop in range(max_hops):
6 summary, query = generator(example)
7 example.hops.append((summary, query))
8 if query == ’N/A’: break
9 passages = dsp.retrieve(query, k=5)

10 example.context = [summary] + passages
11 return example

1 My task is to write a simple query that gathers information for
answering a complex question. I write N/A if the context
contains all information required.

2
3 {Task demonstrations from x.demos, if any}
4
5 Context: {x.context}
6 Question: {x.question}
7 Summary: Let’s summarize the above context. __{summary}__
8 Search Query: __{query}__
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Some DSP results

Open-SQuAD HotPotQA QReCC Open-MuSiQue PopQA
EM F1 EM F1 F1 nF1 2H 3H 4H S@7 <25p <50p <75p Popular

Vanilla LM 16.2 25.6 28.3 36.4 29.8 18.4 8.7/16.8 4.0 / 13.8 3.6 / 12.2 N/A 23.9 27.0 33.6 63.3
No-retrieval LM SoTA 20.2¶ – 33.8¶ 44.6¶ – – – – – – – – – –

Retrieve-then-Read 33.8 46.1 36.9 46.1 31.6 22.2 11.4/20.0 3.3/10.7 2.9/12.7 26.7 41.7 40.0 39.1 50.1
Self-ask (w/ ColBERTv2) 9.3 17.2 25.2 33.2 — – 15.2¶/– – – – – – – –

+ Refined Prompt 9.0 15.7 28.6 37.3 – – – – – – – – – –
Retrieval-aug. LM SoTA 34.0¶ – 35.1¶ – – – – – – – – – – –

Task-aware DSP Program 36.6 49.0 51.4 62.9 35.0 25.3 24.6/36.0 13.5/22.7 7.0/13.7 49.2 44.3 40.4 42.2 61.9

• Open-SQuAD: Demonstrations selected essentially as in HW, Q2. Predict uses self-consistency.
• HotPotQA: Iterative summary of retrieved passages, iterative generation of questions. Predict uses

self-consistency.
• QReCC: As with the QA tasks, but operating on sets of dialogue turns, with successive summarization of

the dialogue context.
• MuSiQue is a test task for multihop, PopQA for OpenQA. PopQA results include a breakdown by entity

prevalence.
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Suggested methods
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Suggested methods
• Create dev/test sets for yourself based on the task
you want to solve, aiming for a format that can
work with a lot of prompts

• Learn what you can about your target model,
paying particular attention to whether it was tuned
for specific instruction formats.

• Think of prompt writing as AI system design. Try to
write systematic, generalizable code for handling
the entire workflow from reading data to extracting
responses and analyzing results.

• For the current (and perhaps brief) moment,
prompt designs involving multiple pretrained
components and tools seem to be underexplored
relative to their potential value.
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