Hand-built features Sentence-encoding Chained
000000 0000

Natural Language Inference:
Modeling strategies

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

Other strategies

1/17


http://creativecommons.org/licenses/by/4.0/

Hand-built features



Hand-built features Sentence-encoding Chained Other strategies
000000 0000

Hand-built feature ideas

3/17



Hand-built features Sentence-encoding Chained Other strategies
000000 0000

Hand-built feature ideas
1. Word overlap

3/17



Hand-built features Sentence-encoding Chained
000000 0000

Hand-built feature ideas
1. Word overlap

2. Word cross-product

Other strategies

3/17



Hand-built features Sentence-encoding Chained
000000 0000

Hand-built feature ideas
1. Word overlap

2. Word cross-product

3. Additional WordNet relations

Other strategies

3/17



Hand-built features Sentence-encoding Chained Other strategies
000000 0000

Hand-built feature ideas
1. Word overlap

2. Word cross-product
3. Additional WordNet relations

4. Edit distance

3/17



Hand-built features Sentence-encoding Chained

000000 0000

Hand-built feature ideas

1.

2.

Word overlap
Word cross-product
Additional WordNet relations

Edit distance

. Word differences (cf. word overlap)

Other strategies

3/17



Hand-built features Sentence-encoding Chained

000000 0000

Hand-built feature ideas

1.

2.

Word overlap
Word cross-product
Additional WordNet relations

Edit distance

. Word differences (cf. word overlap)

. Alignment-based features

Other strategies

3/17



Hand-built features Sentence-encoding Chained

000000 0000

Hand-built feature ideas

1.

2.

Word overlap

Word cross-product

. Additional WordNet relations

Edit distance

. Word differences (cf. word overlap)
. Alignment-based features

. Negation

Other strategies

3/17



Hand-built features Sentence-encoding Chained Other strategies

000000 0000

Hand-built feature ideas

1.

2.

Word overlap

Word cross-product

. Additional WordNet relations

Edit distance

. Word differences (cf. word overlap)
. Alignment-based features
. Negation

. Quantifier relations (e.qg., every c some; see MacCartney

and Manning 2009)

3/17



Hand-built features Sentence-encoding Chained Other strategies
000000 0000

Hand-built feature ideas
1. Word overlap

2. Word cross-product

3. Additional WordNet relations

4. Edit distance

5. Word differences (cf. word overlap)
6. Alignment-based features

7. Negation

8. Quantifier relations (e.qg., every c some; see MacCartney
and Manning 2009)

9. Named entity features

3/17



Sentence-encoding models



Hand-built features Sentence-encoding Chained Other strategies
®00000 0000

Distributed representations as features

A classifier of some kind (learned) \-

e.g., concatenation, difference

(not learned) e .
eg.,sum average, | X, X,

etc. (not learned) /I\ /l\

Embedding look-up }-—/ X X, = 9 X5 X,

5/17



Hand-built features

Sentence-encoding Chained
0®0000 0000

Other strategies

Code: Distributed representations as features

[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

import numpy as np

import os

from sklearn.linear_model import LogisticRegression
import nli, utils

SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")
GLOVE_HOME = os.path.join('data', 'glove.6B')

glove_lookup = utils.glove2dict(
os.path.join(GLOVE_HOME, 'glove.6B.50d.txt'))

def _get_tree_vecs(tree, lookup, np_func):
allvecs = np.array([lookup[w] for w in tree.leaves() if w in lookup])
if len(allvecs) ==
dim = len(next(iter(lookup.values())))
feats = np.zeros(dim)
else:
feats = np_func(allvecs, axis=0)
return feats

def glove_leaves_phi(tl, t2, np_func=np.sum):
prem_vecs = _get_tree_vecs(tl, glove_lookup, np_func)
hyp_vecs = _get_tree_vecs(t2, glove_lookup, np_func)
return np.concatenate((prem_vecs, hyp_vecs))

def glove_leaves_sum_phi(tl, t2):
return glove_leaves_phi(tl, t2, np_func=np.sum)

6/17



Hand-built features Sentence-encoding Chained Other strategies
0®0000 0000

Code: Distributed representations as features

[71: def fit_softmax(X, y):
mod = LogisticRegression(
fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit (X, y)
return mod

[8]: glove_sum_experiment = nli.experiment(
nli.SNLITrainReader (SNLI_HOME),
glove_leaves_sum_phi,
fit_softmax,
assess_reader=nli.SNLIDevReader (SNLI_HOME),
vectorize=False) # We already have vectors!

6/17



Hand-built features Sentence-encoding Chained Other strategies

00@000 0000

Rationale for sentence-encoding models

1. Encoding the premise and hypothesis separately might
give the model a chance to find rich abstract
relationships between them.

2. Sentence-level encoding could facilitate transfer to other
tasks (Dagan et al.’s (2006) vision).

7/17



Hand-built features Sentence-encoding Chained Other strategies

000@00 0000

Sentence-encoding RNNs

w. Likely to be

» " concatenation

h, and h,, should be good combo(h,, h,)

sentence representations
Won W, W,, Won Win Wiy

h, —> h, —> h, —» h, hy, —> h, —> h, —> h,
th T WXPI T th T th‘ 1 wxh th T
) X X, X3 Xg X,

8/17



Hand-built features Sentence-encoding Chained Other strategies
000080 0000

PyTorch strategy: Sentence-encoding RNNs
The full implementation is in n1i_02_models. ipynb.

TorchRNNSentenceEncoderDataset
This is conceptually a list of pairs of sequences, each with
their lengths, and a label vector:

[([eve ry,dog, danced], [every, poodle, moved]), (3, 3), entailment

TorchRNNSentenceEncoderClassifierModel

This is concetually a premise RNN and a hypothesis RNN. The
forward method uses them to process the two parts of the
example, concatenate the outputs of those passes, and feed
them into a classifier.

TorchRNNSentenceEncoderClassifier

This is basically unchanged from its super class
TorchRNNClassifier, except the predict_proba method
needs to deal with the new example format.

9/17



Hand-built features Sentence-encoding Chained Other strategies
00000® 0000

Sentence-encoding TreeNNs

Y T - Likely to be

concatenation
combo(py,p,)

Pg = filp,;x,]W + b) Po = AlIPGX,IW + b)
P, =l x,JW+ b) X, P, = Allx,ix,JW + b) X,

N AN

g g X, Xg
Leaf nodes are
looked up in the
embedding.

10/17



Chained models



Hand-built features Sentence-encoding Chained Other strategies

Simple RNN

w

bl e e

X3 X2 X4 X3 X5 Xy

T TR R

12/17



Hand-built features Sentence-encoding Chained

000000 [e] lele)

Rationale for chained models

Other strategies

1. The premise truly establishes the context for the
hypothesis.

2. Might be seen as corresponding to a real processing
model.

13/17



Hand-built features Sentence-encoding Chained
000000 0000

Code snippet: Simple RNN

Other strategies

[1]: import os
from torch_rnn_classifier import TorchRNNClassifier
import nli, utils

[2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")

[3]: def simple_chained_rep_rnn_phi(tl, t2):
return t1.leaves() + ["[SEP]"] + t2.leaves()

[4]: def fit_simple_chained_rnn(X, y):
vocab = utils.get_vocab(X, n_words=10000)
vocab.append (" [SEP]")
mod = TorchRNNClassifier(vocab, hidden_dim=50, max_iter=50)
mod.fit (X, y)
return mod

[56]: simple_chained_rnn_experiment = nli.experiment(
nli.SNLITrainReader (SNLI_HOME, samp_percentage=0.10),
simple_chained_rep_rnn_phi,
fit_simple_chained_rnn,
vectorize=False)

14/17



Hand-built features Sentence-encoding Chained Other strategies
000000 0o0e

Premise and hypothesis RNNs

y

Wh

w, w, Y

b hh W, Wy, W, Wi

hy h, h, hy, —> h, —> h; —> h,
ot wf wf el wf et
X, X, X, Xy X5 X,

every dog danced every poodle moved

The PyTorch implementation strategy is similar to the one outlined earlier
for sentence-encoding RNNs, except the final hidden state of the premise
RNN becomes the initial hidden state for the hypothesis RNN.

15/17



Hand-built features Sentence-encoding Chained Other strategies
000000 0000

Other strategies

TorchRNNClassifier

e TorchRNNClassifier feeds its final hidden state directly
to the classifier layer.

o If bidirectional=True, then the two final states are
concatenated and fed directly to the classifier layer.

Other ideas
e Pool all the hidden states with max or mean.
« Different pooling options can be combined.

» Additional layers between the hidden representation
(however defined) and the classifier layer.

o Attention mechanisms

16/17



References

References |

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2006. The PASCAL recognising textual entailment challenge. In
Machine Learning Challenges, Lecture Notes in Computer Science, volume 3944, pages 177-190. Springer-Verlag.

Bill MacCartney and Christopher D. Manning. 2009. An extended model of natural logic. In Proceedings of the Eighth
International Conference on Computational Semantics, pages 140-156, Tilburg, The Netherlands. Association for
Computational Linguistics.

17/17


http://www.aclweb.org/anthology/W09-3714

	Hand-built features
	Sentence-encoding models
	Distributed representations as features
	Code: Distributed representations as features
	Rationale for sentence-encoding models
	Sentence-encoding RNNs
	PyTorch strategy: Sentence-encoding RNNs
	Sentence-encoding TreeNNs

	Chained models
	Simple RNN
	Rationale for chained models
	Code snippet: Simple RNN
	Premise and hypothesis RNNs

	Other strategies
	References
	References


