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Distributed representations as features

A classifier of some kind (learned) \-
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Code: Distributed representations as features

[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

import numpy as np

import os

from sklearn.linear_model import LogisticRegression
import nli, utils

SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")
GLOVE_HOME = os.path.join('data', 'glove.6B')

glove_lookup = utils.glove2dict(
os.path.join(GLOVE_HOME, 'glove.6B.50d.txt'))

def _get_tree_vecs(tree, lookup, np_func):
allvecs = np.array([lookup[w] for w in tree.leaves() if w in lookup])
if len(allvecs) ==
dim = len(next(iter(lookup.values())))
feats = np.zeros(dim)
else:
feats = np_func(allvecs, axis=0)
return feats

def glove_leaves_phi(tl, t2, np_func=np.sum):
prem_vecs = _get_tree_vecs(tl, glove_lookup, np_func)
hyp_vecs = _get_tree_vecs(t2, glove_lookup, np_func)
return np.concatenate((prem_vecs, hyp_vecs))

def glove_leaves_sum_phi(tl, t2):
return glove_leaves_phi(tl, t2, np_func=np.sum)
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Code: Distributed representations as features

[71: def fit_softmax(X, y):
mod = LogisticRegression(
fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit (X, y)
return mod

[8]: glove_sum_experiment = nli.experiment(
nli.SNLITrainReader (SNLI_HOME),
glove_leaves_sum_phi,
fit_softmax,
assess_reader=nli.SNLIDevReader (SNLI_HOME),
vectorize=False) # We already have vectors!
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Rationale for sentence-encoding models

1. Encoding the premise and hypothesis separately might
give the model a chance to find rich abstract
relationships between them.

2. Sentence-level encoding could facilitate transfer to other
tasks (Dagan et al.’s (2006) vision).
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Sentence-encoding RNNs
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PyTorch strategy: Sentence-encoding RNNs
The full implementation is in n1i_02_models. ipynb.

TorchRNNSentenceEncoderDataset
This is conceptually a list of pairs of sequences, each with
their lengths, and a label vector:

[([eve ry,dog, danced], [every, poodle, moved]), (3, 3), entailment

TorchRNNSentenceEncoderClassifierModel

This is concetually a premise RNN and a hypothesis RNN. The
forward method uses them to process the two parts of the
example, concatenate the outputs of those passes, and feed
them into a classifier.

TorchRNNSentenceEncoderClassifier

This is basically unchanged from its super class
TorchRNNClassifier, except the predict_proba method
needs to deal with the new example format.
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Sentence-encoding TreeNNs
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Rationale for chained models

Other strategies

1. The premise truly establishes the context for the
hypothesis.

2. Might be seen as corresponding to a real processing
model.
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Code snippet: Simple RNN

Other strategies

[1]: import os
from torch_rnn_classifier import TorchRNNClassifier
import nli, utils

[2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")

[3]: def simple_chained_rep_rnn_phi(tl, t2):
return t1.leaves() + ["[SEP]"] + t2.leaves()

[4]: def fit_simple_chained_rnn(X, y):
vocab = utils.get_vocab(X, n_words=10000)
vocab.append (" [SEP]")
mod = TorchRNNClassifier(vocab, hidden_dim=50, max_iter=50)
mod.fit (X, y)
return mod

[56]: simple_chained_rnn_experiment = nli.experiment(
nli.SNLITrainReader (SNLI_HOME, samp_percentage=0.10),
simple_chained_rep_rnn_phi,
fit_simple_chained_rnn,
vectorize=False)
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Premise and hypothesis RNNs
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every dog danced every poodle moved

The PyTorch implementation strategy is similar to the one outlined earlier
for sentence-encoding RNNs, except the final hidden state of the premise
RNN becomes the initial hidden state for the hypothesis RNN.
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Other strategies

TorchRNNClassifier

e TorchRNNClassifier feeds its final hidden state directly
to the classifier layer.

o If bidirectional=True, then the two final states are
concatenated and fed directly to the classifier layer.

Other ideas
e Pool all the hidden states with max or mean.
« Different pooling options can be combined.

» Additional layers between the hidden representation
(however defined) and the classifier layer.

o Attention mechanisms
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