Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Anna Goldie

Lecture 8: Transformers
Adapted from slides by Anna Goldie, John Hewitt

Lecture Plan

Impact of Transformers on NLP (and ML more broadly)
From Recurrence (RNNs) to Attention-Based NLP Models
Understanding the Transformer Model

B W

Drawbacks and Variants of Transformers

Lecture Plan

1. Impact of Transformers on NLP (and ML more broadly)
2.
3.

Transformers: Is Attention All We Need?

e Last lecture, we learned that attention dramatically improves the performance of
recurrent neural networks.

 Today, we will take this one step further and ask Is Attention All We Need?

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* 1 Fukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Transformers: Is Attention All We Need?

e Last lecture, we learned that attention dramatically improves the performance of
recurrent neural networks.

 Today, we will take this one step further and ask Is Attention All We Need?
e Spoiler: Not Quite!

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* 1 Fukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Transformers Have Revolutionized the Field of NLP

e By the end of this lecture, you will deeply understand the neural architecture that
underpins virtually every state-of-the-art NLP model today! Output

Probabilities

(

Feed Forward

~

A) k
e |
=Y t.:!‘
, e _ re
X ; ¥ s
® E -
~ - N N *

- Decoder
Add & Norm Add & Norm
& : Repeat 6x
>4 Encoder Multi-Head (# of Layers)
N Attention
? Repeat 6x
> N (# of Layers)

Add & Norm Add & Norm
Masked Multi-

Multi-Head
Attention Head Attention
17) {
ek o z o N Positional @’Cb D—-@ Positional
Courtesy of Paramount Pictures Encoding 3 Encoding
Input Output
Embedding Embedding

Inputs Outputs
6 (shifted right)

P T 7,

’ R
» .
’ '
W i
R $” v b ' ~ 1 a (A
- /4 . r— - G Y \ 4
i . AN o S A
4 . e . 4 e . - « AN
. R P . ¢ ¢ -
S . T v ‘ A E: 4
T , \ . o
e Sy / ; A : fa : S
=~ { R
B g . o’ % A : : g ' . v T “I
— S - W - \ "
: - : | f

=

Great Results with Transformers: Machine Translation

First, Machine Translation results from the original Transformers paper!

BLEU Training Cost (FLOPs)
Model EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-101° 1.4-10%0
ConvS2S [9] 25.16 40.46 9.6-10® 1.5-10%
MoE [32] 26.03 40.56 2.0-10* 1.2-10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 2636 41.29 7.7-101% 1.2.10%
Transformer (base model) 27.3 38.1 3.3-1018
Transformer (big) 284 41.8 2.3-10%

7 [Test sets: WMT 2014 English-German and English-French] [Vaswani et al., 2017]

Great Results with Transformers: SuperGLUE

SuperGLUE is a suite of challenging NLP tasks, including question-answering, word sense
disambiguation, coreference resolution, and natural language inference.

Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC AX-b AX-g

1 JDExplore d-team Vega v2 g 91.3 90.5 98.6/99.2 99.4 88.2/62.4 94.4/93.9 96.0 77.4 98.6 -0.4 100.0/50.0

+ 2 Liam Fedus ST-MoE-32B g 91.2 92.4 96.9/98.0 99.2 89.6/65.8 95.1/94.4 93.5 77.7 96.6 72.3 96.1/94.1
3 Microsoft Alexander v-team Turing NLR v5 C’J‘ 90.9 92.0 95.9/97.6 98.2 88.4/63.0 96.4/95.9 941 771 97.3 67.8 93.3/95.5

4 ERNIE Team - Baidu ERNIE 3.0 C}J| 90.6 91.0 98.6/99.2 97.4 88.6/63.2 94.7/94.2 92.6 77.4 97.3 68.6 92.7/94.7

5 YiTay PalLM 540B C}J' 90.4 919 94.4/96.0 99.0 88.7/63.6 94.2/93.3 94.1 774 959 729 95.5/90.4

+ 6 Zirui Wang T5 + UDG, Single Model (Google Brain) C}J' 90.4 91.4 95.8/97.6 98.0 88.3/63.0 94.2/93.5 93.0 77.9 96.6 69.1 92.7/91.9
+ 7 DeBERTa Team - Microsoft ~ DeBERTa / TuringNLRv4 g 90.3 90.4 95.7/97.6 98.4 88.2/63.7 94.5/94.1 93.2 77.5 95.9 66.7 93.3/93.8
8 SuperGLUE Human Baselines SuperGLUE Human Baselines g 89.8 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 76.6 99.3/99.7

+ 9 T5Team - Google T5 g 89.3 91.2 93.9/96.8 94.8 88.1/63.3 94.1/93.4 92.5 76.9 93.8 65.6 92.7/91.9
10 SPoT Team - Google Frozen T5 1.1 + SPoT g 89.2 91.1 95.8/97.6 95.6 87.9/61.9 93.3/92.4 92.9 75.8 93.8 66.9 83.1/82.6

g [Test sets: SuperGLUE Leaderboard Version: 2.0] [Wang et al., 2019]

Great Results with Transformers: Rise of Large Language Models!

Today, Transformer-based models dominate LMSYS Chatbot Arena Leaderboard!

Rank A @ Model 4 . Arena Elo Al 95% CI A @ Votes A Organization A License 4 Knowledge Cutoff 4
1 GPT-4-Turbo-2024-04-09 1258 +4/-4 26444 OpenAI Proprietary 2023/12
1 GPT-4-1106-preview 1253 +3/-3 68353 OpenAI Proprietary 2023/4
1 Claude_3. 0Opus 1251 +3/-3 71500 Anthropic Proprietary 2023/8
2 Gemini.l1.5.Pxo. ARL-0409: 1249 +4/-5 22211 Google Proprietary 2023/11
Preview
3 GPT-4-0125-preview 1248 +2/-3 58959 OpenAI Proprietary 2023/12
6 Meta Llama 3 70b Instruct 1213 +4/-6 15809 Meta Llama 3 Community 2023/12
6 Bard (Gemini Pro) 1208 +7/-6 12435 Google Proprietary Online
7 Claude._ 3 Sonnet 1201 +4/-2 73414 Anthropic Proprietary 2023/8

Gemini / Bard ChatGPT / GPT-4 Claude 3 Llama 3 i
9 (Google) (OpenAl) (Anthropic) (Meta) [Chlang et aI., 2024]

Transformers Even Show Promise Outside of NLP

Transformers Even Show Promise Outside of NLP

Protein Folding

Theinternational journal of science /26 August 2021
nat 4 II l e

e 7 =

Fe .5 \ mn

)
/ I =
} > 3
g 2 RN) (e

[Jumper et al. 2021] aka AlphaFold2!

11

https://www.nature.com/articles/s41586-021-03819-2

Transformers Even Show Promise Outside of NLP

Protein Folding

Theinternational journal of science / 26 August 2021

Image Classification

[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms
ResNet-based baselines with substantially less compute.

Ours-JFT Ours-JET Ours-121k BiT-L Noisy Student

(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55+004 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5%
ImageNet RealL 90.72+005 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50 006 99.42+0.03 99.15+0.03 99.37 +0.06 -
CIFAR-100 94.55+004 93.90+0.05 93.25+0.05 93.51 +0.08 -

Oxford-IIIT Pets 97.56+003 97.32+011 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102 99.68 £0.02 99.74+000 99.61+0.02 99.63 £ 0.03 -
VTAB (19 tasks) T7.63+023 T76.28+046 T72.72+021 76.29 +1.70 -

TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

[Jumper et al. 2021] aka AlphaFold2!

12

https://www.nature.com/articles/s41586-021-03819-2

Transformers Even Show Promise Outside of NLP

Protein Folding

Systems ML

Theinternational journal of science / 26 August 2021

nat’ire

/‘7
22 | o IO
Image Classificati QoL o - i
mage Classification e B e
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms tsrtiaver [IM0-AMIAID om0 A0

ResNet-based baselines with substantially less compute. tsitver . [[AJAIDA[MIHD o (A0
Emibedding D D D |:| |:| D embecding || [][] D D

Ours-JFT Ours-JET Ours-121k BiT-L Noisy Student Encoder Decoder
(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)

ImageNet 88.55+004 87.76+003 85.30+002 87.54+0.02 88.4/88.5* M L fo r Syste m S

=EEE258S

Iy
Ll
gl
gl
gl
1
[

ImageNet RealL 90.72+005 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50 006 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+004 93.90+0.05 93.25+0.05 93.51 +0.08 - Z 20201: -
Oxford-IIIT Pets 97.56+003 97.32+011 94.67+015 96.62+0.23 — [hOU' etal. 20 0] A Transformer-based
Oxford Flowers-102 99.68+0.02 99.74+000 99.61+002 99.63+0.03 - compiler model (GO-one) speeds up a
VTAB (19 tasks) T7.63+023 T76.28+046 T72.72+021 76.29 +1.70 - T f d ||
TPUv3-core-days 2.5k 0.68k 0.23k 9.0k 12.3k ranstormer model!
Run time Search
GO HP METIS HDP
i | | 8| W | i | o
2 layer RNNLM (2) 0173 0.192 0355 0.191 9.9% /9.4% 295x
4—1iyﬂ‘ RNNLM (4) 0.210 0.239 0503 0.251 13.8% / 16.3% 1.76x
8-layer RNNLM (8) 0.320 0.332 00M 0.764 3.8%/58.1% 27.8x
v - Zlayer GNMT (2) 0.301 038 0344 0327 7765 1 143% 0x
| 4layer GNMT (4) 0.350 0469 0.466 0432 34% /23.4% 588
3 - i 0.440 0.562 00M 0.693 21.7% ! 36.5% 7.35x
[Jumper et al. 2021] aka AIphaFoId2 : 2layer Transformer-XL (2) 0223 0268 037 0262 20.1% 17.4% a0x
“layer Transformer.XL (4) 0.230 027 00M 0259 17.4% 1 12.6% 267
§-layer Transformer-XL (8 0.350 046 00M 0425 23.9% / 16.7% 167%
,,,,, . 0229 0312 00M 0301 26.6% 123.9% 135x
Inception (2) b 0.423 0731 00M 0.498 42.1%1293% 21.0x
AmoebaNet (3) 0394 044 0426 0418 %6.1%76.1% 58.8x
2-stack 18-layer WaveNel (2) 0.317 0.376 00M 0354 18.6% / 11.7% 6.67x
4-stack 36-layer WaveNet (4) 0.659 0.988 00M 0721 50% /9.4% 20x
GEOMEAN B B B B 205% / 18.2% Tx

13

https://www.nature.com/articles/s41586-021-03819-2

Scaling Laws: Are Transformers All We Need?

e With Transformers, language modeling performance improves smoothly as we increase
model size, training data, and compute resources in tandem.

* This power-law relationship has been observed over multiple orders of magnitude with
no sign of slowing!

* |f we keep scaling up these models (with no change to the architecture), could they
eventually match or exceed human-level performance?

7 4.2

—— L=(D/5.4-10%3)7%0% | 5.6 —— L =(N/8.8+103)"0.076

3.9 48

3.6 4.0

3.3 3.2

Test Loss

3.0
2.4

L =(Cmin/2.3-108)70.050

) . r : . 2.7 . . ' 1 '
10-* 1077 1075 107% 107! 10! 108 109 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

[Kaplan et al., 2020]

14

https://arxiv.org/pdf/2001.08361.pdf

Outline

From Recurrence (RNNs) to Attention-Based NLP Models

B W

15

As of last lecture: recurrent models for (most) NLP!

e Circa 2016, the de facto strategy in NLP is to HHHQIQ

encode sentences with a bidirectional LSTM: I
(for example, the source sentence in a translation) ieieieieiei

* Define your output (parse, sentence,
summary) as a sequence, and use an LSTM to i
generate it.

 Use attention to allow flexible access to
memory

16

Why Move Beyond Recurrence?
Motivation for Transformer Architecture

The Transformers authors had 3 desirata when designing this architecture:
1. Minimize (or at least not increase) computational complexity per layer.

2. Minimize path length between any pair of words to facilitate learning of long-range
dependencies.

3. Maximize the amount of computation that can be parallelized.

I 17 [Vaswani et al., 2017]

https://arxiv.org/pdf/1706.03762

1. Transformer Motivation: Computational Complexity Per Layer

When sequence length (n) << representation dimension (d), complexity per layer is lower for a Transformer
compared to the recurrent models we’ve learned about so far.

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and 7 the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n~ O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

Table 1 of the Transformer paper.

18 [Vaswani et al., 2017]

https://arxiv.org/pdf/1706.03762

2. Transformer Motivation: Minimize Linear Interaction Distance I

 RNNs are unrolled “left-to-right”.
* |t encodes linear locality: a useful heuristic!

* Nearby words often affect each other’s meanings
tasty pizza

* Problem: RNNs take O(sequence length) steps for distant word
pairs to interact.

O(sequence length)

\
(\

—> 000 <«—> <«—> 0900 —

I

I The chef who ... ate
19

—> 000 > «—> 000 —

2. Transformer Motivation: Minimize Linear Interaction Distance I

* O(sequence length) steps for distant word pairs to interact means:
* Hard to learn long-distance dependencies (because gradient problems!)

 Linear order of words is “baked in”; we already know sequential structure
doesn't tell the whole story...

—'000 > 000—>l—>
i—>000 > — 000 —>

The chef who ... f ate

Info of chef has gone through
I O(sequence length) many layers!
20

3. Transformer Motivation: Maximize Parallelizability

* Forward and backward passes have O(seq length) unparallelizable operations
¢ GPUs (and TPUs) can perform many independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN hidden
states have been computed

* Inhibits training on very large datasets!

 Particularly problematic as sequence length increases, as we can no longer batch
many examples together due to memory limitations

n_.a_. ——eee —.T—» ...—» —»
Hk - ..HF

1

Numbers indicate min # of steps before a state can be computed

21

High-Level Architecture: Transformer is all about (Self) Attention

* To recap, attention treats each word’s representation as a query to
access and incorporate information from a set of values.

e Last lecture, we saw attention from the decoder to the encoder in a
recurrent sequence-to-sequence model

 Self-attention is encoder-encoder (or decoder-decoder) attention where
each word attends to each other word within the input (or output).

All words attend
attention

to all words in

attention previous layer;
most arrows here

embedding , are omitted
1 h; h

T

22

Computational Dependencies for Recurrence vs. Attention

RNN-Based Encoder-Decoder
Model with Attention

_C
N Tt
T

» 7 T

\

Transformer-Based

FM Encoder-Decoder Model
23

Computational Dependencies for Recurrence vs. Attention

RNN-Based Encoder-Decoder
Model with Attention

1
o

24

Transformer Advantages:

* Number of unparallelizable operations does
not increase with sequence length.

* Each "word" interacts with each other, so
maximum interaction distance is O(1).

=== ==
e ===~

\

Transformer-Based

FM Encoder-Decoder Model

Outline

Understanding the Transformer Model

B W

The Transformer Encoder-Decoder [Vaswani et al., 2017]

In this section, you will learn exactly how
the Transformer architecture works:
First, we will talk about the Encoder!
Next, we will go through the Decoder

26

(which is quite similar)!

Encoder

Repeat 6x
(# of Layers)

Add & Norm \

Multi-Head
Attention

1J

(

_

P05|t|9nal 2 Wes
Encoding

Input
Embedding

Inputs

Output
Probabilities

Feed Forward

Decoder

Repeat 6x
(# of Layers)

Masked Multi-
Head Attention

* Positional
3 Encoding
Output
Embedding
Outputs

(shifted right)

Encoder: Self-Attention

Self-Attention is the core building block of
Transformer, so let's first focus on that!

Output
Probabilities
e I
s ~ Decoder
Encoder
Y
\ = 2N J

Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

27

Intuition for Attention Mechanism

= Let's think of attention as a "fuzzy" or approximate hashtable:

= To look up a value, we compare a query against keys in a table.
= |n a hashtable (shown on the bottom left):

= Each query (hash) maps to exactly one key-value pair.

" |n (self-)attention (shown on the bottom right):
= Each query matches each key to varying degrees.
= We return a sum of values weighted by the query-key match.

ke, ™ Vo kg
k, v, kK, F—
/— Ky v, K F—v,
q ky v, q Ky >
k, ™=V, k, ™=V,
ke Vs ke Vs
ke —— Ve Ke
k; V7 kK, ™

28

Recipe for Self-Attention in the Transformer Encoder

= Step 1: For each word x; , calculate its query, key, and value.

qi = WQxi ki = WKxi 0; = Win ko 7
K,
e Step 2: Calculate attention score between query and keys. K, F—v,
_ k q Ky >
eij =i j k, >V,
. . . ke 2V
« Step 3: Take the softmax to normalize attention scores. :
s k6 —
exp(e;;)
a;j = softmax(e;;) = k, —
2 exp(eir)
k

Step 4: Take a weighted sum of values.

Output; = Zacl-]-vj
j

29

Recipe for (Vectorized) Self-Attention in the Transformer Encoder I

= Step 1: With embeddings stacked in X, calculate queries, keys, and values.
Q=XWe K=XWK VvV=XWV

« Step 2: Calculate attention scores between query and keys.
E = QKT

« Step 3: Take the softmax to normalize attention scores.
A = softmax(E)

* Step 4: Take a weighted sum of values. Output — Softmax (QKT) |4
Output = AV

What We Have So Far: (Encoder) Self-Attention!

Output
Probabilities

T
~ p

s ~ Decoder

Encoder

Self-Attention

-

Input Output
Embedding Embeddmg

Inputs Outputs
(shifted right)

31

But attention isn't quite all you need!

* Problem: Since there are no element-wise non-linearities, self-
attention is simply performing a re-averaging of the value vectors.

» Easy fix: Apply a feedforward layer to the output of attention, et
providing non-linear activation (and additional expressive power). T
-

Equation for Feed Forward Layer

m; = MLP(output;)
= W, = ReLU(W; X output; + b;) + b,

s ~ Decoder

Fncoder
Feed Forward

! T ! T
FF FF FF FF

self-attention Tﬁu
er - O\l %
! j i i
FF FF FF FF
| T T |
self-attention Embedding Embedding
Inputs Outputs
" "2 "3 Wt (shifted right)

The chef who food
32

But how do we make this work for deep networks?

Output
Probabilities

EURAL T
NETWORKS a N\

w - ~
= Encoder Decoder

Feed Forward
; Repeat bx Repeat 6x

(# of Layers) (# of Layers)
/ \ Self-Attention

\HLJ/\ /

Training Trick #1: Residual Connections -
Training Trick #2: LayerNorm Cpmbe‘“‘“g S
Training Trick #3: Scaled Dot Product Attention inputs Outputs

(shifted right)

STACK
MORE
LAYERS

33

Training Trick #1: Residual Connections [He et al., 2016]

Output
Probabilities

* Residual connections are a simple but powerful T
technique from computer vision. C A
* Deep networks are surprisingly bad at Decoder
learning the identity function! (" ot ayers]
* Therefore, directly passing "raw" embeddings to ngf?t?e)r
the next layer can actually be very helpful!
X¢ = F(xp_1) + x4
e This prevents the network from "forgetting" or _ _ Y,

distorting important information as it is

Input Output
processed by many layers. [coaing |

Inputs Outputs
(shifted right)
Residual connections are %
also thought to smooth the !‘4\ n
IOSS Iandscape and make [no residuals] [residuals]
training easier! [Loss landscape visualizatio

Lietal., 2018, onaResNet]

34

Training Trick #2: Layer Normalization [Ba et al., 2016]

* Problem: Difficult to train the parameters of ouput
a given layer because its input from the layer 0
beneath keeps shifting. 4 N
e Solution: Reduce variation by normalizing to
zero mean and standard deviation of one)
within each layer. Fncoder Decoder

(# of Layers) (# of Layers)

Add & Norm

Self-Attention

1 & e
Mean: 4'= > a; Standard Deviation: o —J;Z(ai—uf)z
i=1 i

NG AN /

ot F
x — f Embedding Embedding
O + €

Inputs Outputs
(shifted right)

35

Training Trick #2: Layer Normalization [Ba et al., 2016]

Output
1 Batech with 3 SO\MPIQS mean std_dev Probabilities

T

, 4)
ot
o
S 4)
W

o)| ((rmsrones

Feed Forward
Repeat 6x Repeat 6x
(# of Layers) (# of Layers)

Add & Norm

Self-Attention

Normalization across Mini-‘ao\‘tch,

Mde,pe_nden‘tlt/ for each feature

.

An Example of How LayerNorm Works (Image by Bala Priya C, Pinecone)

Input Output
| & —
Mean: #'= > e Standard Deviation: ¢ - J > (-)’
=1 =1

Inputs Outputs
(shifted right)

=2 "¢

t
36 o +€

Training Trick #3: Scaled Dot Product Attention

* After LayerNorm, the mean and variance of T
vector elements is 0 and 1, respectively. (Yay!)

Output
Probabilities

T
- p

 However, the dot product still tends to take on
extreme values, as its variance scales with
dimensionality d,

Caaanom)
Repeat 6x

(# of Layers)
| Add & Norm

Scaled Attentio

Quick Statistics Review:

« Mean of sum = sum of means=d; *0 =0

* Variance of sum = sum of variances = dj * 1 = d
* To set the variance to 1, simply divide by\/d_k!

ll

- AN J

Emll?:du;ing
Updated Self-Attention Equation: ;

Inputs Outputs
Output = softmax (QKT /N di |V

(shifted right)

37

Major issue!

* We're almost done with the .
Encoder, but we have a Output = softmax(QK [Vax|V

major problem! Has anyone
spotted it?

e Consider this sentence: M
 "Man eats small dinosaur." M
L
Transformer-Based
F%: Encoder-Decoder Model

Man eats small dinosaur

38

Major issue!

39

We're almost done with the
Encoder, but we have a
major problem! Has anyone
spotted it?
Consider this sentence:

* "Man eats small dinosaur."

Wait a minute, order doesn't
impact the network at all!

This seems wrong given that
word order does have meaning
in many languages, including
English!

Output = softmax(QKT /N dp|V

==
== =l

g A

Man

eats

small dinosaur

=ttt
== il

\

Transformer-Based
Encoder-Decoder Model

Solution: Inject Order Information through Positional Encodings!

Output
Probabilities

T
~ p

Decoder
/ \ Repeat 6x
Add & Norm (# of Layers)
e
Feed Forward
Repeat 6x
(# of Layers)

Add & Norm

Scaled Attentio

1J
NG AN /

Positional @"@5
Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

40

Fixing the first self-attention problem: sequence order

* Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

* Consider representing each sequence index as a vector
p; € R%, fori € {1,2, ..., T} are position vectors

e Don’t worry about what the p; are made of yet!
e Easy to incorporate this info into our self-attention block: just add the p; to our inputs!

~

* Let U; k;, g; be our old values, keys, and queries.

v; = U; + p; In deep self-attention

q; = 4; + p; 1r:1.et;/\:orks,l v\\(/e do th||§ at the
— T irst layer! You cou

ki =k; +p; Y

concatenate them as well,
but people mostly just add...

41

Position representation vectors through sinusoids (original)

* Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

-

(sin(i/1000021/4)) 2 Zrras i:i;j_‘jt-fﬁ’ 4-' ..-

cos(i/10000%*1/4)
bi = °

sm(t/lOOOOz*;/d)
cos(i/10000%2/%),

DHnenﬁon

Index in the sequence
* Pros:

* Periodicity indicates that maybe “absolute position” isn’t as important
* Maybe can extrapolate to longer sequences as periods restart

* Cons:
* Not learnable; also the extrapolation doesn’t really work

42 Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Extension: Self-Attention w/ Relative Position Encodings

Key Insight: The most salient position information is the relationship (e.g. “cat” is the word before “eat”)
between words, rather than their absolute position (e.g. “cat” is word 2).

Original Self-Attention Output: Relation-Aware Self-Attention Output:
2= aij(z;WY) zi =) oz, W¥ +aj))
j=1 '

€XP €;4 €XP €44 EN-DE BLEU

k
1 25.5
, 2 |258
(z;WQ) (x;WE)T WO (o, WE + afﬁ T 4 25.9
eij = Cij = N 16 | 258
d Jd i
Vd, . z‘/) 64 | 259

1% %4
@ij = Welip(j—i,k)
clip(z, k) = max(—k, min(k, x))

We then learn relative position representations
K _ (,,K K V _ (yV 1%
w® = (wh,...,wi)and w” = (w",,...,wy)

Table and Equations From [Shaw et al., 2018]

43

https://arxiv.org/abs/1803.02155

Multi-Headed Self-Attention: k heads are better than 1!

* High-Level Idea: Let's perform self-attention multiple times in parallel and combine the results.

Multi-Head Attention
)

Linear

I

Concat

AN
1

Scaled Dot-Product : h
Attention

[])]

f o W L

Linear Linear Linear

= g

4
” 8

o~

\Y K Q

[Vaswani et al. 2017]

Wizards of the Coast, Artist: Todd Lockwood

44

The Transformer Encoder: Multi-headed Self-Attention

45

What if we want to look in multiple places in the sentence at
once?

* For word i, self-attention “looks” where xl-TQTKxj is high, but
maybe we want to focus on different j for different reasons?

We'll define multiple attention “heads” through multiple Q,K,V
matrices

d
Let, Qp, Kp, Vy €]Rdxﬁ, where h is the number of attention heads,

and £ ranges from 1 to h.
Each attention head performs attention independently:

- output, = softmax(XQ,K, XT) = XV,, where output, €
]Rd/h

Then the outputs of all the heads are combined!

- output = Y[outputy; ...; outputy], where Y € R4*¢

Each head gets to “look” at different things, and construct value
vectors differently.

Layer:| 5§ § | Attention:| Input - Input

H BNl ©
The

animal
didn

—+

Cross
the
street
because

=3

| | | | |

was
too_

tire ~

d

The_
animal_
didn_

L
Cross_
the_
street_

because_

was_
too_
tire
d

Credit to https://jalammar.github.io/illustrated-transformer/

Yay, we've completed the Encoder! Time for the Decoder...

Output
Probabilities

T
~ p

Add & Norm

Encoder Decoder
Repeat 6x Repeat 6x
(# of Layers) (# of Layers)

Add & Norm
Multi-Head
Attention

1J
1\l /

Positional @_Gb
Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

46

Decoder: Masked Multi-Head Self-Attention

 Problem: How do we keep the decoder
from “cheating”? If we have a language
modeling objective, can't the network

just look ahead and "see" the answer? : ’

v = — l

Transformer-Based
F%: Encoder-Decoder Model

Decoder: Masked Multi-Head Self-Attention

 Problem: How do we keep the decoder
from “cheating”? If we have a language
modeling objective, can't the network

just look ahead and "see" the answer? : ’

e Solution: Masked Multi-Head
Attention. At a high-level, we hide
(mask) information about future 7 /£ L M
tokens from the model. \

Transformer-Based
F%: Encoder-Decoder Model

Masking the future in self-attention

We can look at these
(not greyed out) words
* To use self-attention in I

decoders, we need to ensure (@\ . . |
we can’t peek at the future. S 0 @ N

. [START]
e At every timestep, we could

change the set of keys and
queries to include only past The

words. (Inefficient!) For encoding
these words

—

o chef
* To enable parallelization, we

mask out attention to future
words by setting attention who
scores to —co. qiTkj;]' < i

e' ~——
Y —00,j > i

49

Decoder: Masked Multi-Headed Self-Attention

50

Output
Probabilities

T
~ p

Encoder Decoder
Repeat 6x Repeat 6x
(# of Layers) (# of Layers)

Add & Norm

Masked Multi-
Head Attention
4

Multi-Head

Attention
T3 T
\ L] /
Positional g %3_@ Positional

Encoding Encoding
Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder-Decoder Attention

 We saw that self-attention is when keys, queries,

Output

and values come from the same source. *’r°bi;”“‘es

* |Inthe decoder, we have attention that looks 4 B
more like what we saw last week.

* Let hy,..., hy be output vectors from the (" Canm]) | | Cegsmem
Transformer encoder; x; € R4 Encoder o Decoder

(# of Layers) (# of Layers)

* Letzq,...,zr beinput vectors from the
Transformer decoder, z; € R4

Add & Norm

Masked Multi-Head
Self-Attention

T

Self-Attention
* Then keys and values are drawn from the % -)L)
encoder (like a memory): postonal (2

Positional
Encoding %’)—@ Encc;cding
* ki =Kh;, v; =Vh;.
 And the queries are drawn from the decoder,
q; = Qz;.

Inputs Outputs
(shifted right)

51

Decoder: Finishing touches!

52

Add & Norm

Encoder
Feed Forward
Repeat 6x
(# of Layers)

Add & Norm

Multi-Head
Attention

J
J

")+
Input
Embedding

Inputs

.

Positional
Encoding

4)

Add & Norm 6]
Multi-Head
Attention

Masked Multi-
Head Attention

- = /
Output
Embedding

Outputs
(shifted right)

Positional
Encoding

Decoder

Repeat 6x
(# of Layers)

Decoder: Finishing touches!

* Add a feed forward layer (with residual
connections and layer norm)

(

Feed Forward

- ~ Decoder
Repeat 6x
Attention
Repeat 6x
(# of Layers)

Add & Norm
Masked Multi-

Multi-Head
Attention Head Attention

‘L—J u;
Positional G

Positional
Encoding
Input Output
Embedding Embedding

Encoding
Inputs Outputs
(shifted right)

_

53

Decoder: Finishing touches!

* Add a feed forward layer (with residual
connections and layer norm)

 Add afinal linear layer to project the
embeddings into a much longer vector of
length vocab size (logits) .

Feed Forward

Linear

T

- ~ Decoder
q
Encoder Repeat b
(# of Layers)
Repeat 6x
(# of Layers)

Add & Norm
Multi-Head Masked Multi-
Attention Head Attention

‘L—J u;
Positional G

Positional
Encoding
Input Output
Embedding Embedding

Encoding
Inputs Outputs
(shifted right)

_

54

Decoder: Finishing touches!

* Add a feed forward layer (with residual
connections and layer norm)

 Add afinal linear layer to project the
embeddings into a much longer vector of
length vocab size (logits)

* Add a final softmax to generate a

probability distribution of possible next
words!

55

Output
Probabilities

10 A
- ~ Decoder
Repeat 6x
Fncoder rettore
Repeat 6x
(# of Layers)

Add & Norm
Multi-Head Masked Multi-
Attention Head Attention
17 Ui

Positional

_

Positional

Encoding B Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Recap of Transformer Architecture

56

Encoder

Repeat 6x
(# of Layers)

o

Add & Norm

Feed Forward
Add & Norm

Multi-Head
Attention

c

Positional
Encoding

")—~+
Input
Embedding

Inputs

Output
Probabilities

(

Feed Forward

Add & Norm
Multi-Head
Attention

Add & Norm

Masked Multi-
Head Attention

~

+

N

Output
Embedding

Outputs
(shifted right)

Positional
Encoding

Decoder

Repeat 6x
(# of Layers)

Outline

1
2.
3.
4. Drawbacks and Variants of Transformers

57

What would we like to fix about the Transformer?

e Quadratic compute in self-attention (today):

* Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

* For recurrent models, it only grew linearly!
e Position representations:

* Are simple absolute indices the best we can do to represent position?
* As we learned: Relative linear position attention [Shaw et al., 2018]

* Dependency syntax-based position [Wang et al., 2019]

* Rotary Embeddings [Su et al., 2021]

58

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf
https://arxiv.org/abs/2104.09864

Recent work on improving on quadratic self-attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O(T?) all-pairs self-attention cost?

* For example, Linformer [Wang et al., 2020]

Linear 120 F — Linformer, k=2048
' —s— Linformer, k=1024
—_ —d— Linformer, k=512
Key idea: map the Sl = g |~ Linformer, k=256
£ | : — = Linformer, k=128
sequence le ngt h - ST y g —r— Transformer
dimension to a lower- . Mtnl . S ol
. . " () e ——
dimensional space for Projetion | [Peeiosion =
I k f = -—t = HE 10+ S S 2 &
values, keys - Linem_'_]. Linear 1 B . '_.‘.‘:_:'__".-_—_?_-f-_—.—:?_t -_-.-_-.:-.*_-. —_-1-. — —_-:__*:__'-':'*

I

K

512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1
Sequence length / batch size

o-g

59

https://arxiv.org/pdf/2006.04768.pdf

Recent work on improving on quadratic self-attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O(T?) all-pairs self-attention cost?

* For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

p

_| DE _IEI
Ll L
Ijl_l I_l[|:ll_l

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

60

https://arxiv.org/pdf/2006.04768.pdf

Do Transformer Modifications Transfer?

e "Surprisingly, we find that most modifications do not meaningfully improve
performance.”

Model Params Ops Stop/s Early loss Final loss SGLUE XSum WebQ | WMT EnDe
Vanilla Transformer 223M 11T 3.50 2,182 £0.005 1838 7166 17.78 23.02 ‘ 26.62
GeLU 223M 11T 3.58 1.838 T6.79 17.86 25.13 2647
1nar 362 1847 TIIT 177 24.34 26.75
11T 3.56 2608
1117 2712
11T 26.87
m1r 27.02
mar 299
mar 27.02
11.1T 26.53
11.1T 26.30
11T 26.89
mir 27.14
17 26,37 . - -
erNorm 1nar 2629
how Lstcn Do Transformer Modifications Transfer Across Implementations
Fixup 11.1T 26.31
. e
24 layers, di 11T 26.89
i an pplications?
6 layers, dg = 6144, H 117 26.66
Block sharing 1ar 2548 * - - -
e B Sh N H Won Ch Yi T William Fed
¥ ot et o o aran aran un on un 1 1a 1111am Fedus
beddings
Encader only block sharing 1700 1117 1929 6960 1623 2302 26,23
Decoder only block sharing 1440 1117 2.082 67.93 16.13 23.81 26,08 1,
Fuctorioed Enbedding 2070 0.7 s ma tm | 6 hibault F Michael Mat T K h Malka T Noah Fiedel
Factorsed & shared cmod. 200 01T L2 ese s mm | i Thibau evry 1IcCnae atena arisnma a n oa lede
dings
Tied encoder/decoder in- 2480 1117 1840 TLT0 17.72 24.34 2649
put embeddin
Tied decoder input and out- 2480 mir 1L.827 T4.86 1774 24.87 26.67 1’ - - -
o b N Sh Zhenzh L Yanqi Zh Wei L
Untied embeddings 273IM mar LE34 7209 23.28 2645 Oam azeer enz on an an l ou e" l
Adaptive input embeddings 2040 9.2T 1.899 66.57 16.21 24.07 26.66
Adaptive softmax 204M . + 1982 72.91 16.67 21.16 25.56
Adaptive softmax without ~ 223M 1087 2.x 1914 71.82 17.10 23.02 2572 . . 1,
Nan D Jake M Adam Robert Colin Raffel
e vt e v me ww an Ding e Marcus am Roberts olin e
Transparent o 1 1ar 218120014 1874 531 1040 2016 2
jyiamic convalution 1187 2403 £ 247 5690 1267
Lightweight convelution 10,47 1,489 w486
Evolved Transformer 09T 1.863 6T 10.76
Synthesizer (dense) 1147 1.962 61.03 127
nthesizer (dense plus) 1267 1840 7308 1696
e plus al 1267 1.828 7425 1702
uthesizer (factorized) 1011 1.968 15.39 2642
random) 1047 2,000 10.35 2644
oan plus) 1207 159 1842 17.04 26,43
ndom plus 2020 1207 2186 1.828 17.08 26,39
Universal Transformer BAM 4007 2,406 = 0.036 2053 T0.13 14.09 19.05 2391
Mixture of experts G4BT 1197 2,148 £ 0L006 1.785 TA55 18.13 24.08
itch Transformer N0OM 1197 2135 £ 0.007 1.758 T5.38 18.02 26.19
e 223M 197 2.288 % (L.008 1.918 67.34 16.26
. WM TLOT 2378 £ 0.021 1489 69.04 16,98
Product key memory A21M 386.6T 2,155 £0.003 L7908 T5.16 1.4 26.73

61

Parting remarks

* Yay, you now understand Transformers!

* Next class, we will see how pre-training can take performance to the next levell!
e Good luck on assignment 4!
« Remember to work on your project proposal!

62

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: Lecture Plan
	Slide 4: Transformers: Is Attention All We Need?
	Slide 5: Transformers: Is Attention All We Need?
	Slide 6: Transformers Have Revolutionized the Field of NLP
	Slide 7: Great Results with Transformers: Machine Translation
	Slide 8: Great Results with Transformers: SuperGLUE
	Slide 9: Great Results with Transformers: Rise of Large Language Models!
	Slide 10: Transformers Even Show Promise Outside of NLP
	Slide 11: Transformers Even Show Promise Outside of NLP
	Slide 12: Transformers Even Show Promise Outside of NLP
	Slide 13: Transformers Even Show Promise Outside of NLP
	Slide 14: Scaling Laws: Are Transformers All We Need?
	Slide 15: Outline
	Slide 16: As of last lecture: recurrent models for (most) NLP!
	Slide 17: Why Move Beyond Recurrence? Motivation for Transformer Architecture
	Slide 18: 1. Transformer Motivation: Computational Complexity Per Layer
	Slide 19: 2. Transformer Motivation: Minimize Linear Interaction Distance
	Slide 20: 2. Transformer Motivation: Minimize Linear Interaction Distance
	Slide 21: 3. Transformer Motivation: Maximize Parallelizability
	Slide 22: High-Level Architecture: Transformer is all about (Self) Attention
	Slide 23: Computational Dependencies for Recurrence vs. Attention
	Slide 24: Computational Dependencies for Recurrence vs. Attention
	Slide 25: Outline
	Slide 26: The Transformer Encoder-Decoder [Vaswani et al., 2017]
	Slide 27: Encoder: Self-Attention
	Slide 28: Intuition for Attention Mechanism
	Slide 29: Recipe for Self-Attention in the Transformer Encoder
	Slide 30: Recipe for (Vectorized) Self-Attention in the Transformer Encoder
	Slide 31: What We Have So Far: (Encoder) Self-Attention!
	Slide 32: But attention isn't quite all you need!
	Slide 33: But how do we make this work for deep networks?
	Slide 34: Training Trick #1: Residual Connections [He et al., 2016]
	Slide 35: Training Trick #2: Layer Normalization [Ba et al., 2016]
	Slide 36: Training Trick #2: Layer Normalization [Ba et al., 2016]
	Slide 37: Training Trick #3: Scaled Dot Product Attention
	Slide 38: Major issue!
	Slide 39: Major issue!
	Slide 40: Solution: Inject Order Information through Positional Encodings!
	Slide 41: Fixing the first self-attention problem: sequence order
	Slide 42: Position representation vectors through sinusoids (original)
	Slide 43: Extension: Self-Attention w/ Relative Position Encodings
	Slide 44: Multi-Headed Self-Attention: k heads are better than 1!
	Slide 45: The Transformer Encoder: Multi-headed Self-Attention
	Slide 46: Yay, we've completed the Encoder! Time for the Decoder...
	Slide 47: Decoder: Masked Multi-Head Self-Attention
	Slide 48: Decoder: Masked Multi-Head Self-Attention
	Slide 49: Masking the future in self-attention
	Slide 50: Decoder: Masked Multi-Headed Self-Attention
	Slide 51: Encoder-Decoder Attention
	Slide 52: Decoder: Finishing touches!
	Slide 53: Decoder: Finishing touches!
	Slide 54: Decoder: Finishing touches!
	Slide 55: Decoder: Finishing touches!
	Slide 56: Recap of Transformer Architecture
	Slide 57: Outline
	Slide 58: What would we like to fix about the Transformer?
	Slide 59: Recent work on improving on quadratic self-attention cost
	Slide 60: Recent work on improving on quadratic self-attention cost
	Slide 61: Do Transformer Modifications Transfer?
	Slide 62: Parting remarks

