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Lecture 4: Dependency Parsing



Lecture Plan

Syntactic Structure and Dependency parsing

1. Syntactic Structure: Consistency and Dependency (30 mins)
2. Dependency Grammar and Treebanks (15 mins)

3. Transition-based dependency parsing (15 mins)

4. Neural dependency parsing (20 mins)

Key Learnings: Explicit linguistic structure and how a neural net can decide it

Reminders/comments:
* In Assignment 3, out on Tuesday, you build a neural dependency parser using PyTorch!

Start installing and learning PyTorch (Ass 3 is quite scaffolded)

Come to the PyTorch tutorial, Friday, 4:30pm - 5:20pm, Skilling Auditorium

Final project discussions — come meet with us; focus of Tuesday class in week 4




1. The linguistic structure of sentences — two views: Constituency I
= phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents

Starting unit: words

the, cat, cuddly, by, door

Words combine into phrases
the cuddly cat, by the door

Phrases can combine into bigger phrases

the cuddly cat by the door
I 3



The linguistic structure of sentences — two views: Constituency = I
phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents.

the cat

a dog
large in a crate
barking on the table
cuddly by the door

large barking
talk to
I walked behind
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Two views of linguistic structure: Dependency structure

* Dependency structure shows which words depend on (modify, attach to, or are
arguments of) which other words.

Look in the large crate in the kitchen by the door




Why do we need sentence structure?

Humans communicate complex ideas by composing words together
into bigger units to convey complex meanings

Human listeners need to work out what modifies [attaches to] what

A model needs to understand sentence structure in order to be able
to interpret language correctly



Prepositional phrase attachment ambiguity

$an Jose cops kil man with knife Ciose
Text Paper Transiate Usten
| E E Q Sign in News Sport @ Weather @ Shop  Reel Travel

NEWS

Home Video World US & Canada UK Business Tech Science Stories

" Science & Environment

' Scientists count whales from space

By Jonathan Amos
BBC Science Correspondent
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Prepositional phrase attachment ambiguity

() You

generate an image for "scientists count whales from space"

ChatGPT

Here is the generated image illustrating "scientists counting whales from space". It

shows a satellite orbiting Earth, equipped with advanced cameras and sensors,

observing whales in the ocean from a high vantage point.

N2




PP attachment ambiguities multiply

* A key parsing decision is how we ‘attach’ various constituents
* PPs, adverbial or participial phrases, infinitives, coordinations,

The board approved [its acquisition] [by Royal Trustco Ltd..
fof Toronto

[for $27 a share]

[at its monthly meeting].

Catalan numbers: C,= 2n)!/[(n+1)!n!]

An exponentially growing series, which arises in many tree-like contexts:
« E.g., the number of possible triangulations of a polygon with n+2 sides
12 « Turns up in triangulation of probabilistic graphical models (CS228)....




Coordination scope ambiguity

Shuttle veteran and longtime NASA executive Fred Gregory appointed to board

Shuttle veteran and longtime NASA executive Fred Gregory appointed to board
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Coordination scope ambiguity




Adjectival/Adverbial Modifier Ambiguity

AWFIITHI W FRITW SFWass § R0y RERRRTw wrw

numbers, Including some that featured a bucket and
wmmnmmmmwm

'ORING DAY

udents ge gt first ha

|'<'. o) ‘: -"

and Job expenence_

LSS TION

— T - ——
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Verb Phrase (VP) attachment ambiguity

theguardian

home ) world ) americas asia

Rio de Janeiro

Mutilated body washes up
on Rio beach to be used for
Olympics beach volleyball

6/29/16, 1:48 PM
17



Dependency paths help extract semantic interpretation —
simple practical example: extracting protein-protein interaction

demonstrated

nSfV ccomp

results mark interacts

nmod:with
that _ advmod SasA
nsubj casg/Nj:and

The . . . :
KaiC rythmically ith KaiA and KailB
conj:and cc

KaiC € nsubj interacts nmod:with = SasA
KaiC €nsubj interacts nmod:with =» SasA conj:and=> KaiA
KaiC €nsubj interacts nmod:with =» SasA conj:and=> KaiB

[Erkan et al. EMNLP 07, Fundel et al. 2007, etc.]
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2. Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted
Rills w!re Rrownback

ports ‘(/////';77\\\\\\A
///<;7\\\\\ by Senator Republican

on and immigration
Kansas

of
19




Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted
The arrows are

nsubj:@/ aux \J‘bl
commonly typed

i Bill B D k
with the name of 115 were rownbac

. nmodl
grammatical pOTLS case at appos
relations (subject, . |
prepositional object case cC conj by Senator Republican

apposition, etc.) on and immigration ”m"dl

Kansas
casel

of
20




Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

An arrow connects a head
with a dependent

Usually, dependencies
form a tree (a connected,
acyclic, single-root graph)

21

submitted
nsubj:@/ l aux \J‘bl
Bills were Brownback
nmodl
ports case flat appos
Ciﬂa/;Z;S\\ffnj by Senator Republican
on and immigration nmodl
Kansas
casel

of




Dependency Grammar/Parsing History

The idea of dependency structure goes back a long way
* To Panini’s grammar (c. 5th century BCE)
* Basic approach of 1st millennium Arabic grammarians

Constituency/context-free grammar is a new-fangled invention
e 20th century invention (R.S. Wells, 1947; then Chomsky 1953, etc.)
Modern dependency work is often sourced to Lucien Tesniere (1959)

« Was dominant approach in “East” in 20t Century (Russia, China, ...)
* Good for free-er word order, inflected languages like Russian (or Latin!)

Used in some of the earliest parsers in NLP, even in the US:

* David Hays, one of the founders of U.S. computational linguistics, built early (first?)
dependency parser (Hays 1962) and published on dependency grammar in Language
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Panini’s grammar (c. 5th century BCE)

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.html
CC BY 4.0 File:Birch bark MS from Kashmir of the Rupavatra Wellcome L0032691.jpg
But this comes from much later — originally the grammar was oral

23



http://wellcomeimages.org/indexplus/image/L0032691.html
http://creativecommons.org/licenses/by/4.0

Dependency Grammar and Dependency Structure

=

ROOT Discussion of the outstanding issues was completed .

 Some people draw the arrows one way; some the other way!
* Tesniere had them point from head to dependent — we follow that convention
 We usually add a fake ROOT so every word is a dependent of precisely 1 other node

I 24



The rise of annotated data & Universal Dependencies treebanks

Brown corpus (1967, PoS tagged 1979); Lancaster-IBM Treebank (starting late 1980s);
Marcus et al. 1993, The Penn Treebank, Computational Linguistics;
Universal Dependencies: http://universaldependencies.org/

[context] [conllu]

puncts

ccompr
nsubj
amod COﬂj
—’*“S“"’ [NOURF 00" h\-

76 thlnk eramar was a famous goat tralner or somethlng
[Context] [conllu]

«advmod

- -/—‘auxDaSSW "\pr
nsubjpass xcompnlm\q-

77 Why is the called eramar ?

[context] [conllu]

punct»

nmod»
aux ccomp nsubj
-/;-msubj !ﬁexpl d’h ’ucase
—— —_——

84/ Do you think there are any koreans in Miramar ?
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http://universaldependencies.org/

The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful than writing a grammar
(by hand)

But a treebank gives us many things
* Reusability of the labor

* Many parsers, part-of-speech taggers, etc. can be built on it
* Valuable resource for linguistics

* Broad coverage, not just a few intuitions
* Frequencies and distributional information
* A way to evaluate NLP systems

26




Dependency Parsing

A sentence is parsed by choosing for each word what other word (including ROOT) it is
a dependent of

e Usually some constraints:
* Only one word is a dependent of ROOT
 Don’t wantcyclesA—>B,B—> A

* This makes the dependencies a tree

* Final issue is whether arrows can cross (be non-projective) or not

AT

ROOT give a talk tomorrow neural networks
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Projectivity

I 29

Definition of a projective parse: There are no crossing dependency arcs when the
words are laid out in their linear order, with all arcs above the words

Dependencies corresponding to a CFG tree must be projective
* |.e., by forming dependencies by taking 1 child of each category as head

Most syntactic structure is projective like this, but dependency theory normally does
allow non-projective structures to account for displaced constituents

* You can’t easily get the semantics of certain constructions right without these

nonprojective dependencies
V‘oo"'

W eV

Who did Bill buy the coffee from yesterday ?




3. Methods of Dependency Parsing

1.

Dynamic programming
Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse items
with heads at the ends rather than in the middle

Graph algorithms
You create a Minimum Spanning Tree for a sentence

McDonald et al.’s (2005) O(n?) MSTParser scores dependencies independently using an
ML classifier (he uses MIRA, for online learning, but it can be something else)

Neural graph-based parser: Dozat and Manning (2017) et seq. — very successful!
Constraint Satisfaction

Edges are eliminated that don’t satisfy hard constraints. Karlsson (1990), etc.
“Transition-based parsing” or “deterministic dependency parsing”

Greedy choice of attachments guided by good machine learning classifiers

E.g., MaltParser (Nivre et al. 2008). Has proven highly effective. And fast.




Greedy transition-based parsing [Nivre 2003]

 Asimple form of a greedy discriminative dependency parser

 The parser does a sequence of bottom-up actions

* Roughly like “shift” or “reduce” in a shift-reduce parser — CS143, anyone?? — but the
“reduce” actions are specialized to create dependencies with head on left or right

* The parser has:

* a stack o, written with top to the right
* which starts with the ROOT symbol

 a buffer B, written with top to the left
* which starts with the input sentence

 a set of dependency arcs A
* which starts off empty

* a set of actions
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Basic transition-based dependency parser

Start: 0=[ROOT],B=w,, .., w,,A=0

1. Shift o, w;|B,A=>c|w, B, A

2. Left-Arc, o|w,] w;, B, A -> GIWj, B, AU{r(w,w,)}
3. Right-Arc, o|w;|w, B, A=> o|w, B, AU{r(w,w))}
Finish:o=[w],B=0

I 32



Arc-standard transition-based parser

(there are other transition schemes ...)
Analysis of “I ate fish”

Sta rt Tart: ghTft[ROOT]' giwvi‘%;x M;) ’opl‘;:aﬁ’ )
(iroon) (1 e san |} 22 EEHEE
F.. i g i B Gq!W B,j’AL’J{r(WI,,Wj)}
Shift inish: 0= [w], B =
[[ [root] | | }] ‘ate | fish
Shift

[{[rootﬂ@ ]{[ fish U

I 33



Arc-standard transition-based parser I
Analysis of “I ate fish”

Nota bene:
Left Arc In this example
A+= I’ve at each step
[\ [root] | | ate !] ‘[\ [root]  ate J] nsubj(ate > 1) made the
“correct” next
Shift transition.
: . : But a parser has
[\ root] @ ate ﬂ fish ‘[\ [root] ate fish J] t0 work this out -
. by exploring or
Right Arc A 4o in}:‘err?ng! °
‘ :root] ’ ‘ ate} LflSh ]‘[‘ [root] ’ ‘ ate ’] obj(ate - fish)
Right Arc A e reubote 1
- += =1 nsubj(ate ,
‘ _root] ’ ] ‘ ‘ [root] ’] root([root] > ate) obj(ate - fish)
" Finish root([root] = ate) }



MaltParser [Nivre and Hall 2005]

35

We have left to explain how we choose the next action ¥
* Answer: Stand back, | know machine learning!

Each action is predicted by a discriminative classifier (e.g., softmax classifier) over each
legal move

e Max of 3 untyped choices (max of |R| X 2 + 1 when typed)
e Features: top of stack word, POS,; first in buffer word, POS; etc.
There is NO search (in the simplest form)

e But you can profitably do a beam search if you wish (slower but better):
* You keep k good parse prefixes at each time step

The model’s accuracy is fractionally below the state of the art in dependency parsing,
but

It provides very fast linear time parsing, with high accuracy — great for parsing the web




Conventional Feature Representation

Stack Buffer
{ ROOT ~ has.VBZ good JJ | ! control NN 5
/nsubj
He_PRP

binary, sparse
dim =10°-10’

Feature templates: usually a combination of 1-3
elements from the configuration

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

: sl.w =good A sl.t =JJ :
. 82.w = has A\ s2.t = VBZ A sl.w = good

Indicator features le(s3).t = PRP A s9.t = VBZ A s1.t = JJ

: le(sg).w = He Alc(sg).l = nsubj A sp.w = has

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Evaluation of Dependency Parsing: (labeled) dependency accuracy

Acc = # correct deps

/"/\ //N # of deps

ROOT Sh h id I JAS = 4/5 s
e saw the video lecture LAS = 2/5 = 40%

0 1 2 3 4 5
Gold Parsed

1 2 She nsubj 1 2 She nsubj
2 0 saw root 2 0 saw root

3 5 the det 3 4 the det

4 5 video nn 4 5 video nsubj
5 2 lecture obj 5 2 lecture ccomp




4. Why do we gain from a neural dependency parser?
Indicator Features Revisited

Categorical features are:
 Problem #1: sparse

Neural Approach:

learn a dense and compact feature representation
 Problem #2: incomplete

 Problem #3: expensive to compute

Stack Buffer
More than 95% of parsing time is . ROOT  has.VBZ goodJJ | controlNN ..
consumed by feature computation y PR/P(nsubJ'
e_
e I T 2 tence J
: s2.w = has A s2.t = VBZ A sl.w = good * , 0.1/0.9/-0.2|0.3| ... |-0.1|-0.5
: : dim =~1000

* le(s2).t =PRP A sg.t = VBZ A syt =JJ

* le(sg).w = He Ale(sg).l = nsubj A sp.w = has *

oooooooooooooooooooooooooooooooooooooooooooooo
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A neural dependency parser [Chen and Manning 2014]

* Results on English parsing to Stanford Dependencies:
* Unlabeled attachment score (UAS) = head

* Labeled attachment score (LAS) = head and label

Parser UAS LAS sent. /s
MaltParser 89.8 87.2 469
MSTParser 91.4 38.1 10

TurboParser 92.3 89.6 8
C& M 2014 92.0 89.7 654

I 40



First win: Distributed Representations

 We represent each word as a d-dimensional dense vector (i.e., word embedding)

e Similar words are expected to have close vectors.

 Meanwhile, part-of-speech tags (POS) and degendency labels are also represented as
d-dimensional vectors.

was were
* The smaller discrete sets also exhibit many semantic@les. &
& good

IS

NNS (plural noun) should be close fo NN (singular; &b
nummod (numerical modifier) should be|close to amoé (adjective modifier). :

.
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Extracting Tokens & vector representations from configuration

 \We extract a set of tokens based on the stack / buffer positions:

Stack Buffer
{ ROOT  hasVBZ  good JJ control NN
/nsubj
He PRP

word POS dep
S1 good J) 1) A concatenation
2 has \VBZ 1) of the vector
b1 control NN 1) representation of
Ic(s1) =—pp @ + 0 + 0 all these is the
rc(si) 1) 1) 1) neural
c(s2) He PRP nsubj representation of
rc(s2) 1) 1) 1) a configuration

42




Second win: Deep Learning classifiers are non-linear classifiers

A softmax classifier assigns classes y € C based on inputs x € R? via the probability:
exp(W,.x)

plylz) = zgj:l exp(W,z)

Traditional ML classifiers (including Naive Bayes, SVMs, logistic regression and softmax
classifier) are not very powerful classifiers: they only give linear decision boundaries

But neural networks can use multiple layers to learn much more complex nonlinear
decision boundaries




Neural Dependency Parser Model Architecture
(A simple feed-forward neural network multi-class classifier)

Log loss (cross-entropy error) will be back-
propagated to the embeddings

Softmax probabilities— { Shift, Left-Arc,, Right-Arc, }
Output layer y
y = softmax(Uh + b,) ( )

The hidden layer re-represents the input —
M it moves inputs around in an intermediate
Hidden layer h

0000000 layer vector space—so it can be easily
h = ReLU(Wx + b,) classified with a (linear) softmax

Input layer x  |( )( ) (¢ ) (¢ ) ( )

lookup + concat f Wins:
Stack Buffer Distributed representations!
SN GGG : Non-linear classifier!
+ ROOT  has.VBZ  goed ] | + control NN o
nsubj
He PRP
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Dependency parsing for sentence structure

Chen & Manning (2014) showed that neural networks can accurately
determine the structure of sentences, supporting meaning interpretation

nsubjpass
ux nmod nmod
: Wauxpass VBN case NNS_,/_-ycase NNIS] D

Markets have been Jolted by concerns about China.

This paper was the first simple and successful neural dependency parser

The dense representations (and non-linear classifier) let it outperform other
greedy parsers in both accuracy and speed
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Further developments in transition-based neural dependency parsing

This work was further developed and improved by others, including in particular at Google
* Bigger, deeper networks with better tuned hyperparameters
* Beam search
* Global, conditional random field (CRF)-style inference over the decision sequence
Leading to SyntaxNet and the Parsey McParseFace model (2016):
“The World’s Most Accurate Parser”
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Method ________|UAS___|LAS(PTBWS)SD3.3)

—~"~  Chen & Manning 2014  92.0 89.7
G Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

Q
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https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Graph-based dependency parsers

 Compute a score for every possible dependency for each word

* Doing this well requires good “contextual” representations of each word token,
which we will develop in coming lectures

0.5 0.8
0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”

I 47



Graph-based dependency parsers

 Compute a score for every possible dependency (choice of head) for each word
* Doing this well requires more than just knowing the two words

 We need good “contextual” representations of each word token, which we will
develop in the coming lectures

* Repeat the same process for each other word; find the best parse (MST algorithm)

0.5 0.8
0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”

I 48



A Neural graph-based dependency parser
[Dozat and Manning 2017; Dozat, Qi, and Manning 2017]

* This paper revived interest in graph-based dependency parsing in a neural world
* Designed a biaffine scoring model for neural dependency parsing

* Also crucially uses a neural sequence model, something we discuss next week

e Really great results!

* But slower than the simple neural transition-based parsers
* There are n? possible dependencies in a sentence of length n

Method _________|UAS___|LAS(PTBWS)SD3.3)

~"~ Chen& Manning 2014 92.0 89.7
5 Weiss et al. 2015 93.99 92.05
5  Andoretal. 2016 94.61 92.79

P

Dozat & Manning 2017 95.74 94.08
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