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Note: This project was adapted from the “minbert” assignment developed for Carnegie Mellon Univer-
sity’s CS11-711 Advanced NLP class by Shuyan Zhou, Zhengbao Jiang, Ritam Dutt, Brendon Boldt,
Aditya Veerubhotla, and Graham Neubig.
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1 Overview

The default final project has two parts. In the first part, you will fill in missing code blocks to complete
an implementation of the BERT model. Using pre-trained weights loaded into your BERT model, you will
perform sentiment analysis on the SST dataset and the CFIMDB dataset.

In the second part, you will explore extensions of your BERT model to achieve the highest performance that
you can on multiple sentence-level tasks: sentiment analysis, paraphrase detection, and semantic
textual similarity. The goal of this section is for you to engineer and experiment with improvements to
your BERT model to obtain robust and generalizable sentence embeddings that perform well in more than
one setting.

Note on default project vs. custom project: It is not intended for the default final project to require
less effort or work than the custom final project. The default project simply excludes the difficulty of devising
your own project idea and evaluation methods, allowing students to commit an equivalent amount of effort
to the provided problem.

1.1 Bidirectional Encoder Representations from Transformers: BERT

Bidirectional Encoder Representations from Transformers, or “BERT,” is a transformer-based model that
generates contextual word representations [1]. With its backbone being the transformer and by making
use of bidirectional word representations, BERT took a large leap forward when it was released in 2018 for
contextual word embeddings/large language models/foundational models.

1.2 Sentiment Analysis

A basic task in understanding a given text is classifying its polarity, i.e., whether the expressed opinion in
a text is positive, negative, or neutral. Sentiment analysis can be utilized to determine individual feelings
towards particular products, politicians, or within news reports.

As a concrete example of a sentiment analysis dataset, the Stanford Sentiment Treebank1 [2] consists of
11,855 single sentences extracted from movie reviews. The dataset was parsed with the Stanford parser2

and includes a total of 215,154 unique phrases, annotated by 3 human judges. Each phrase has a label of
negative, somewhat negative, neutral, somewhat positive, or positive. Below are three examples extracted
from the SST dataset:

Movie Review: Light, silly, photographed with colour and depth, and rather a good time.
Sentiment: 4 (Positive)

Movie Review: Opening with some contrived banter, cliches and some loose ends, the screenplay only
comes into its own in the second half.
Sentiment: 2 (Neutral)

Movie Review: ... a sour little movie at its core; an exploration of the emptiness that underlay the
relentless gaiety of the 1920’s ... The film’s ending has a “What was it all for?”
Sentiment: 0 (Negative)

1https://nlp.stanford.edu/sentiment/treebank.html
2https://nlp.stanford.edu/software/lex-parser.shtml

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/software/lex-parser.shtml
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1.3 Paraphrase Detection

Paraphrase detection is the task of finding paraphrases of texts in a large corpus of passages. A paraphrase
is a “restatement (or reuse) of text giving the meaning in another form” [3]. Therefore, paraphrase detection
seeks to determine whether particular words or phrases convey the same semantic meaning. From a research
perspective, paraphrase detection is an interesting task because it provides a measure of how well systems
can ‘understand’ fine-grained notions of semantic meaning.

The website Quora3 often receives questions that are duplicates of other questions. To better redirect
users and prevent unnecessary work, Quora released a dataset that labels whether different questions are
paraphrases of each other. Below are two examples extracted from the Quora dataset:

Question Pair: (1) "What is the step by step guide to invest in share market in india?", (2) "What is
the step by step guide to invest in share market?"
Is Paraphrase: No

Question Pair: (1) "I am a Capricorn Sun Cap moon and cap rising...what does that say about me?",
(2) "I’m a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me?
Is Paraphrase: Yes

1.4 Semantic Textual Similarity (STS)

The semantic textual similarity (STS) task seeks to capture the notion that some texts are more similar
than others; STS seeks to measure the degree of semantic equivalence [4]. STS differs from paraphrasing in
that it is not a yes or no decision. Rather, STS allows for degrees of similarity. For example, on a scale from
0 (not at all related) to 5 (same meaning), the following sentences are rated according to similarity:4

(5) The sentences are completely equivalent, as they mean the same thing:
The bird is bathing in the sink.
Birdie is washing itself in the water basin

(4) The two sentences are mostly equivalent but some unimportant details differ:
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010.

(3) The two sentences are roughly equivalent, but some important information differs:
John said he is considered a witness but not a suspect
“He is not a suspect anymore.”

(2) The two sentences are not equivalent, but do share some details:
They flew out of the nest in groups.
They flew into the nest together.

(1) The two sentences are not equivalent, but are on the same topic:
The woman is playing the violin.
The young lady enjoys listening to the guitar.

3https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
4These sentences and labels come from https://aclanthology.org/S13-1004.pdf [4]

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/S13-1004.pdf
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(0) The two sentences are on different topics:
John went horseback riding at dawn with a whole group of friends.
Sunrise at dawn is a magnificent view to take in if you wake up early enough for it.

1.5 This Project

The goal of this project is for you to implement some of the key aspects of the original BERT model and
explore extensions to improve upon your baseline. The first part focuses on implementing the multi-head
self-attention and transformer layers of the original BERT model. You will then utilize your completed
BERT model to perform sentiment analysis on the Stanford Sentiment Treebank dataset as well as another
dataset of movie reviews. In the second half of this project, you will extend your BERT model to improve
its performance across a wide range of downstream tasks and enter your model’s predictions in a class-wide
competition. In Section 5, we describe several techniques that are commonly used to create more robust
and semantically-rich sentence embeddings in BERT models—most come from recent research papers. We
provide these suggestions to help you get started.

Though you’re not required to implement something original, the best projects will pursue some form of
originality and, in fact, may become research papers in the future. Originality does not necessarily mean
a completely new approach. Small but well-motivated changes to existing models are valuable, especially
if followed by thorough and logical analysis. Showing quantitatively and qualitatively that your small but
original changes improve a state-of-the-art model (and even better, explain what particular problem it solves
and how) will mean that you have done extremely well.

Like the custom final project, the second part of the default final project is open-ended. It will be up to you
to explore the possibilities. We are expecting you to exercise the judgment and intuition that you’ve gained
from the class so far to build your highest performing model. For more information on grading criteria, see
Section 7.

Note that this document only describes the coding portion of the Default Final Project. For
more details on the write-up, see the course website and the handout CS224N: Project Report
Instructions.
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2 Getting Started

For this project, you will need a machine with GPUs to train your models efficiently. For this, you have
access to Google Cloud, similar to Assignments 4 and 5.

We advise that you develop your code on your local machine (or one of the Stanford machines, like
rice), using PyTorch without GPUs, and move to your Google Cloud VM only after you’ve debugged your
code and are ready to train. We advise that you use a private GitHub repository to manage your codebase
and sync files between the two machines and between team members. When you work through this Getting
Started section for the first time, do so on your local machine. You will then repeat the process on your
Google Cloud VM.

Once you are on an appropriate machine, clone the project GitHub repository with the following command:

https://github.com/amahankali10/CS224N-Spring2024-DFP-Student-Handout

This repository contains the starter code and a minimalist implementation of the BERT model (minBERT)
that we will be using. We encourage you to git clone our repository, rather than simply downloading it, so
you can easily integrate any bug fixes we make into the code. In fact, you should periodically check whether
there are any new fixes that you need to download. To do so, run the git pull command while inside the
repository.

If you use GitHub to manage your code, you must keep your repository private.

2.1 Code overview

The repository minbert-default-final-project/ contains the following files:

• Files that should remain unedited:

– base_bert.py: A base BERT implementation that can load pre-trained weights.

– config.py: Classes for runtime configurations.

– optimizer_test.npy A NumPy file containing weights for optimizer_test.py.

– optimizer_test.py A test for your completed Adam Optimizer.

– sanity_check.data A data file for sanity_check.py.

– sanity_check.py A test for your completed bert.py file.

– tokenizer.py: Implements BertTokenizer for text preprocessing.

– utils.py: Utility functions and classes.

• Files with missing code blocks to be completed for Part 1:

– bert.py: Your implementation of the BERT Model.

– classifier.py: A classifier pipeline for running sentiment analysis.

– optimizer.py: Your implementation of the Adam Optimizer.

• Files central to Part 2:

– multitask_classifier.py: A classifier pipeline where you will train your minBERT implemen-
tation to simultaneously perform sentiment analysis, paraphrase detection, and semantic textual
similarity tasks. There are missing code blocks in this file.
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– datasets.py: Functions and classes that load data for the three downstream tasks. You may edit
this if you wish.

– evaluation.py: Functions that evaluate an input model on the three downstream tasks. You will
likely not have to edit this file.

In addition, there are two directories:

• data/. This directory contains the train, dev, and test splits of sst and cfimdb datasets as .csv files
that you will be using in the first half of this projects. This directory also contains the train, dev, and
test splits for later datasets that you will be using in the second half of this project. Note that we do
not provide labels for the test sets.

• predictions/ This directory will become populated with your model’s output predictions on each of
the provided datasets.

2.2 Setup

Once you are on an appropriate machine and have cloned the project repository, it’s time to run the setup
commands.

• Make sure you have Anaconda or Miniconda installed.

• cd into minbert-default-final-project and run source setup.sh

– This creates a conda environment called cs224n_dfp.

– In addition to the defaults installed, you may also have to install the following packages: zipp-3.11.0,
idna-3.4, and chardet-4.0.0.

– For the first part of this project, you are only allowed to use libraries that are installed by setup.sh.
No other external libraries are allowed (e.g., transformers).

• Run conda activate cs224n_dfp

– This activates the cs224n_dfp environment.

– Remember to do this each time you work on your code.

• (Optional) If you would like to use PyCharm, select the cs224n_dfp environment. Example instructions
for Mac OS X:

– Open the minbert-default-final-project directory in PyCharm.

– Go to PyCharm > Preferences > Project > Project interpreter.

– Click the gear in the top-right corner, then Add.

– Select Conda environment > Existing environment > Click ‘...’ on the right.

– Select /Users/YOUR_USERNAME/miniconda3/envs/cs224n_dfp/bin/python.

– Select OK then Apply.
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3 Implementing minBERT

We have provided you with several of the building blocks for implementing minBERT. In this section, we
will describe the baseline BERT model as well as the sections of it that you must implement.

3.1 Details of BERT

Here, we walk through the BERT architecture and briefly mention details about BERT’s original training
procedure.

Tokenization (tokenizer.py)

The BERT model converts sentence input into tokens before performing any additional processing. Specif-
ically, the BERT model uses a WordPiece tokenizer that splits sentences into word pieces. BERT has a
predefined set of 30K different word pieces. These word pieces are then converted into ids for use in the rest
of the BERT model. As an example, the following words are converted into the following word pieces:

Word Word Pieces

snow [snow]
snowing [snow, ##ing]
fight [fight]
fighting [fight,##ing ]
snowboard [snow,##board ]

In addition to separating each sentence into its constituent word pieces tokens, word pieces that have pre-
viously not been seen (i.e., that are not part of the original 30K word pieces) will be set as the [UNK]
token.

To ensure that all input sentences have the same length, each input sentence is padded to a given max_length

(512) with the [PAD] token. Finally, for many downstream tasks, BERT’s hidden state of the first token is
commonly used as the embedding for the entire sentence. To accommodate this, the [CLS] token is prepended
to the token representation of each input sentence. In this first part of this assignment, you will be working
with the hidden state of this token.

Lastly, BERT uses the [SEP] token to introduce an artificial separation between two input sentences. This
separation token was essential for BERT’s pretraining task of next-sentence prediction, but it will be largely
irrelevant for our task of sentiment analysis.

Embedding Layer (bert.BertModel.embed)

After tokenizing and converting each token to ids, the BERT model utilizes a trainable embedding layer
across each token. The input embeddings that are used in later portions of BERT are the sum of the token
embeddings, the segmentation embeddings, and the position embeddings (Figure 1). Each embedding layer
in the base version of BERT has a dimensionality of 768.

The learnable token embeddings map the individual input ids into vector representation for later use. More
concretely, given some input word piece indices5 w1, . . . ,wk ∈ N, the embedding layer performs an embedding
lookup to convert the indices into token embeddings v1, . . . ,vk ∈ RD.

5A token index is an integer that tells you which row (or column) of the embedding matrix contains the word’s embedding.
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The learnable segmentation embeddings are used to differentiate between sentence types. For this project, we
only consider individual sentences and not next-sentence prediction tasks, so the segmentation embeddings
are implemented with placeholders within our provided code base.

Figure 1: BERT embedding layer. The input embeddings that are used later in the model are the sum of
the token embeddings, the segmentation embeddings, and the position embeddings. Figure 2 from [1].

Finally, the positional embeddings are used to encode the position of different words within the input. Like
the token embeddings, position embeddings are parameterized embeddings that are learned for each of the
512 positions in a given BERT input.

Figure 2: Encoder Layer of Transformer used in BERT. Left of Figure 1 from [5].

BERT Transformer Layer (bert.BertLayer)

As described in the original BERT paper [1], the base BERT makes use of 12 Encoder Transformer layers.
These layers were defined initially in the work Attention is All You Need [5]. The Transformer layer of
the BERT transformer, as seen in Figure 2, consists of multi-head attention, followed by an additive and
normalization layer with a residual connection, a feed-forward layer, and a final additive and normalization
layer with a residual connection. We briefly cover each of these layers here. We recommend that you read
Section 3 of both cited papers for additional details.

Multi-head attention (bert.BertSelfAttention.attention) The multi-head attention layer [5] is the
core of the transformer architecture that transforms hidden states for each element of a sequence based on
the other elements (the fully-connected layers act on each element separately). The multi-head layer, which
we write as MH(·), consists of n different dot-product attention mechanisms. At a high level, attention
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represents a sequence element with a weighted sum of the hidden states of all the sequence elements. In
multi-head attention the weights in the sum use dot product similarity between transformed hidden states.
Concretely, the ith attention mechanism ‘head’ is:

Attentioni(hj) =
∑
t

softmax

(
W q

i hj ·W k
i ht√

d/n

)
W v

i ht (1)

where hj (we will drop the index "j" in the following equations to simplify) is a d dimensional hidden vector
for a particular sequence element, and t runs over every sequence element. In BERT the W q

i , W k
i and W v

i

are matrices of size d/n× d, and so each ‘head’ projects down to a different subspace of size d/n, attending
to different information.
Finally the outputs of the n attention heads (each of size d/n) are concatenated together (which we show as
[·, ..., ·]) and linearly transformed with W o (a d× d matrix)6:

MH(h) = W o [Attention1(h), ...,Attentionn(h)] (2)

We further define another component of a BERT layer, the self-attention layer, which we write as SA(·):

SA(h) = FFN(LN(h+MH(h))), (3)

LN(·) is layer normalisation [6]. FFN is a standard feed-forward network,

FFN(h) = W2f(W1h+ b1) + b2, (4)

with f(·) a non-linearity, GeLU [7] in BERT. Matrix W1 has size dff × d and W2 has size d× dff .
Putting this together, a BERT layer, which we write BL(·), is layer-norm applied to the output of a self-
attention layer, with a residual connection.

BL(h) = LN(h+ SA(h)) (5)

Dropout We lastly note that BERT applies dropout to the output of each sub-layer, before it is added
to the sub-layer input and normalized. BERT also applies dropout to the sums of the embeddings and
the positional encodings. BERT uses a setting of pdrop = 0.1.

BERT output (bert.BertModel.forward)

As specified throughout this section, BERT consists of

1. An embedding layer that consists of a word embedder and a position embedder.

2. BERT encoder layers, which are a stack of config.num_hidden_layers (in our case, 12) BertLayers.

The model outputs consist of:

1. last_hidden_state: the contextualized embedding for each word piece of the sentence from the last
BertLayer (i.e. the output of the BERT encoder).

2. pooler_output: the [CLS] token embedding.

Training BERT

The original version of BERT was trained using two unsupervised tasks on Wikipedia articles.
6[5] provide a more detailed motivation and discussion.
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Figure 3: The original BERT model was trained on two unsupervised tasks, masked token prediction and
next sentence prediction. Figure 1 from [1].

Masked Language Modeling In order to train BERT to extract deep bidirectional representations, the
training procedure masks some percentage (15% in the original paper) of the word piece tokens and attempts
to predict them. Specifically, the final hidden vectors that correspond to the masked tokens are fed into an
output softmax layer over the vocabulary and are subsequently predicted.

To prevent a mismatch between initial pre-training and later fine-tuning, the “masked” tokens are not always
replaced by the [MASK] token during training. Rather, the training data generator chooses 15% of the token
positions at random for prediction; then, 80% of the chosen tokens are replaced with [MASK], 10% of the
tokens are replaced with a random token, and another 10% of the tokens remain unchanged.

Next Sentence Prediction In order for BERT to understand the relationships between two sentences,
BERT is further fine-tuned on the Next Sentence Prediction task. Specifically, the BERT model is shown a
sentence and its next sentence 50% of the time; for the other 50% of the time, it is shown a random second
sentence. The BERT model predicts whether the second input sentence is actually the next sentence.

3.2 Code To Be Implemented: Multi-head Self-attention and the Transformer
Layer

We have provided you with much of the code for a BERT baseline model. Having gone over the basic
structure of the BERT Transformer model, we will now describe the sections that need to be implemented:

BERT Multi-head Self-attention: bert.BertSelfAttention.attention

You must implement the multi-head attention layer of the transformer. This layer maps a query and a set of
key-value pairs to an output. The output is calculated as the weighted sum of the values, where the weight
of each value is computed by a function that takes as input the query and key.

BERT Transformer Layer: bert.BertLayer and bert.BertModel

After implementing the BERT multi-head self-attention layer, you must implement several more functions
to realize the full BERT transformer layer. These code blocks can be found at bert.BertLayer.add_norm,
bert.BertLayer.forward, and bert.BertModel.embed.

After finishing these steps, you can run a sanity check to verify the correctness of your implementation:
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python sanity_check.py

The sanity check will load two embeddings we computed with our reference implementation and check
whether your implementation outputs match ours.
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4 Sentiment Analysis with the BERT

Having implemented a working minBERT model, you will now utilize pre-trained model weights and the
output embeddings from your implemented BERT model to perform sentiment analysis on two datasets.
In addition to loading these pre-trained model weights, you will (as done in Assignment 5), fine-tune these
embeddings on each respective dataset to achieve better results. You will find both datasets in the data

subfolder.

4.1 Datasets

Stanford Sentiment Treebank (SST) dataset

The Stanford Sentiment Treebank7 [2] consists of 11,855 single sentences from movie reviews extracted
from movie reviews. The dataset was parsed with the Stanford parser8 and includes a total of 215,154
unique phrases from those parse trees, annotated by 3 human judges. Each phrase has a label of negative,
somewhat negative, neutral, somewhat positive, or positive. You will utilize BERT embeddings to
predict these sentiment classification labels.

For the SST dataset we have the following splits:

• train (8,544 examples)

• dev (1,101 examples)

• test (2,210 examples)

CFIMDB dataset

The CFIMDB dataset consists of 2,434 highly polar movie reviews. Each movie review has a binary label of
negative or positive. You will utilize BERT embeddings to predict these sentiment classifications.

For the CFIMDB dataset we have the following splits:

• train (1,701 examples)

• dev (245 examples)

• test (488 examples)

4.2 Code To Be Implemented: Sentiment Classification with BERT embeddings

In the classifer.py file, you will find a pipeline that

1. Calls the BERT model to encode the sentences for their contextualized representations

2. Trains and evaluates your BERT model on the sentence classification examples

3. Saves your predictions

for both datasets.

In this file, you are to implement BertSentimentClassifer. This class encodes sentences using BERT and
obtains the pooled representation of each sentence.9 It then classifies the sentence by applying dropout on
the pooled output and then projecting it using a linear layer. Already implemented is the model’s capability
to freeze or train parameters depending on whether we are using pre-trained weights or fine-tuning.

7https://nlp.stanford.edu/sentiment/treebank.html
8https://nlp.stanford.edu/software/lex-parser.shtml
9See the forward function in bert.py for how to access this representation.

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/software/lex-parser.shtml
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4.3 Adam Optimizer

In addition to implementing BertSentimentClassifer, you will also implement the step() function of the
Adam Optimizer based on Decoupled Weight Decay Regularization [8] and Adam: A Method for Stochastic
Optimization [9].

Overview of the Adam Optimizer

The Adam optimizer is a method for efficient stochastic optimization that only requires first-order gradients.
The method computes adaptive learning rates for different parameters by estimating the first and second
moments of the gradients. Specifically, at each time step, the algorithm updates exponential moving averages
of the gradient mt and the squared gradient vt where the hyperparameters β1, β2 ∈ [0, 1) control the rate of
exponential decay of these averages. Given that these moving averages are initialized at 0 at the initial time
step, these averages are biased towards zero. As a result, a key aspect of this algorithm is performing bias
correction to obtain m̂t and v̂t at each time step. We present the full algorithm below:

Algorithm 1 Adam algorithm. g2t indicates the element-wise square gt ⊙ gt. All operations on vectors are
element-wise. With Bt

1 and Bt
2, we denote B1 and B2 to the power t.

Require: α : Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ

Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize time step)
while θt not converged do

t← t+ 1

gt ← ∇ft(θt−1) (Get gradients w.r.t. stochastic objective function at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt

1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt

2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ)

return θt (Resulting parameters)
Note that, at the expense of clarity, there is a more efficient version of the above algorithm where the
last three lines in the loop are replaced with the following two lines: αt ← α ·

√
1− βt

2/(1 − βt
1) and

θt ← θt−1 − αt ·mt/(
√
vt + ϵ).

Code To Be Implemented: optimizer.step

You should implement the step() function of the Adam Optimizer. Our reference uses the “efficient” method
of computing the bias correction presented in Section 2 “Algorithm” of [9], also mentioned in the above
pseudo-code. Lastly, you should incorporate weight decay (by adding λ

2 θ
2
t to your loss function, which is

equivalent to subtracting αλθt from your parameters at the end of each gradient descent step, where λ

is the weight decay regularization parameter) as your final update to the parameters. You can test your
implementation by running:

python3 optimizer_test.py
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4.4 Training minBERT for Sentiment Classification

After completing Part 1’s implementations, you will experiment with your completed model using both pre-
trained and fine-tuned embeddings on the SST and the CFIMDB datasets. You can run training by using
the following command:

python3 classifier.py --fine-tune-mode {full-model,last-linear-layer} --lr {1e-3,1e-5}

Training for each dataset should take no more than 5 and 15 minutes (depending on your GPU). Use a
learning rate of 1E-03 when running last-linear-layer and 1E-05 when running full-model. Following,
check that your predictions directory is populated with the following 8 files:

{full-model,last-linear-layer}-sst-dev-out.csv

{full-model,last-linear-layer}-sst-test-out.csv

{full-model,last-linear-layer}-cfimdb-dev-out.csv

{full-model,last-linear-layer}-cfimdb-test-out.csv

As a baseline, your implementation should have results similar to the following (mean reference accuracies
over 10 random seeds with their standard deviation shown in brackets):

Fine-tuning the last linear layer for SST: Dev Accuracy: 0.390 (0.007)
Fine-tuning the last linear layer for CFIMDB: Dev Accuracy: 0.780 (0.002)
Fine-tuning the full model for SST: Dev Accuracy: 0.515 (0.004)
Fine-tuning the full model for CFIMDB: Dev Accuracy: 0.966 (0.007)

You may only use the provided training set and dev set to train, tune, and evaluate your models. If you
use the official test data of these datasets to train, to tune, or to evaluate your models, or
if you manually modify your CSV solutions in any way, you are committing an honor code
violation. For this section, for grading, we will largely be looking at your code/implementation (as well as
your accuracies on the test set).
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Submission Instructions for minBERT
You will submit the minBERT part of this project on Gradescope:

1. Verify that the following files exist at these specified paths within your assignment directory:

• bert.py

• classifier.py

• optimizer.py

• predictions/{full-model,last-linear-layer}-sst-dev-out.csv

• predictions/{full-model,last-linear-layer}-sst-test-out.csv

• predictions/{full-model,last-linear-layer}-cfimdb-dev-out.csv

• predictions/{full-model,last-linear-layer}-cfimdb-test-out.csv

2. Run prepare_submit.py to produce your cs224n_default_final_project_submission.zip file.

3. Upload your cs224n_default_final_project_submission.zip file to the appropriate assignment on
GradeScope.

At a high level, the submission file for the SST and CFIMDB dev/test datasets should look like the following:

id, Predicted_Sentiment

001fefa37a13cdd53fd82f617, 4

00415cf9abb539fbb7989beba, 2

00a4cc38bd041e9a4c4e545ff, 1

...

fffcaebf1e674a54ecb3c39df, 3
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5 Extensions and Improvements for Additional Downstream Tasks

While we have focused on implementing key aspects of BERT in the first half of this project, for the rest of
this project (and the part that will make up the bulk of your grade on the final project), you will have free
rein to explore other datasets to better fine-tune and otherwise adjust your BERT embeddings so that they
can simultaneously perform the following three tasks: sentiment analysis, paraphrase detection, and
semantic textual similarity. The goal of this latter part of the project is to explore how to build robust
embeddings that can perform well across a large range of different tasks!

In this section, we will be using the SST dataset for sentiment analysis, the Quora dataset for paraphrase
detection, and the SemEval dataset for semantic textual analysis. You will find the train, dev, and test

sets for each of these datasets in the data folder. You may only use our training set and our dev set to train,
tune and evaluate your models. If you use the official test data of these datasets to train, to tune,
or to evaluate your models, or if you manually modify your CSV solutions in any way, you are
committing an honor code violation.

In addition to embeddings extracted from pre-trained BERT weights provided to you in the first part of
this assignment, you are allowed to use other pre-existing NLP tools such as a POS tagger, dependency
parser, Wordnet, coreference module, etc. that are not built on top of your trained embeddings. Your
usage of external resources is limited to a reasonable degree. For example, you may not utilize pre-trained
embeddings from the transformers library.

5.1 Dataset Overview

Quora Dataset

The Quora dataset, as previously described in Section 1, consists of 404,298 question pairs with labels
indicating whether particular instances are paraphrases of one another. We have provided you with the
following splits:

• train (283,010 examples)

• dev (40,429 examples)

• test (80,859 examples)

Given the binary labels of this dataset, we use accuracy to evaluate your performance.

SemEval STS Benchmark Dataset

The SemEval STS Benchmark dataset as described in Section 1 consists of 8,628 different sentence pairs of
varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).

For the STS dataset, we have the following splits:

• train (6,040 examples)

• dev (863 examples)

• test (1,725 examples)

When testing this dataset, we will use, as in the original SemEval [4] paper, Pearson correlation of the true
similarity values against the predicted similarity values.
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5.2 Code Overview

We have provided you a set of classes and functions, some containing missing code blocks, that will help you
train and evaluate for Part 2 of this project. We are not grading your code for this part, so you are free
to re-organize, create new classes and functions, or otherwise retrofit your old code. Here, we give a brief
overview of the provided code:

• multitask_classifier.MultitaskBERT: A class that imports the weights of a pre-trained BERT model
and predicts sentiment, paraphrases, and semantic textual similarity.

• multitask_classifier.MultitaskBERT.forward: Invokes your previously implemented BERT model
to output sentence embeddings. You can choose to experiment with the contextual word embeddings
of particular word pieces or extract just the pooler_output as in classifier.py.

• multitask_classifier.MultitaskBERT.predict_sentiment: Predicts the sentiment of a sentence based
on BERT embeddings. As a baseline, you should call the new forward() method above followed by a
dropout and linear layer as in classifier.py.

• multitask_classifier.MultitaskBERT.predict_paraphrase: Predicts whether two sentences are para-
phrases of each other based on their embeddings.

• multitask_classifier.MultitaskBERT.predict_similarity: Predicts the similarity of two sentences
based on their embeddings.

• multitask_classifier.train_multitask(): A function for training your model. It is largely your
choice how to train your model. As a placeholder, you will find a copy of the original code from
classifier.py, which trains your model on only the SST sentiment dataset.

• multitask_classifier.test_multitask(): A function for testing your model. This function also saves
predictions for both dev and test sets of all three tasks. It’s unlikely that you will edit this function.

• evaluation.model_eval_multitask(): A function that evaluates an input Multitask BERT model on
the dev sets of all three tasks. You may find it useful to use this function in your implementation of
multitask_classifier.train_multitask().

• datasets.SentenceClassificationDataset: A class for handling the SST sentiment dataset. Feel free
to edit this class if you wish to modify the way in which the data examples are preprocessed.

• datasets.SentencePairDataset: A class for handling the SemEval and Quora datasets. Feel free to
edit this class if you wish to modify the way in which the data examples are preprocessed.

The following command is a convenient way to train, evaluate, and save the predictions of your multitask
BERT model for the three datasets all at once:

python3 multitask_classifier.py [OPTIONS]

5.3 Possible Extensions

There are many possible extensions that can improve your model’s performance on the SST, Quora, and
SemEval STS datasets simultaneously. We recommend that you find a relevant research paper for each
improvement that you wish to attempt. Here, we provide some suggestions, but you might look elsewhere
for interesting ways of improving sentence embeddings for the three selected tasks.
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Figure 4: To improve your BERT model, there are several different paths that you can take including (1)
additional pre-training on BERT’s original objectives, (2) fine-tuning your model directly on a single task,
(3) multi-task training your BERT model.

Additional Pretraining

Original Paper: How to Fine-Tune BERT for Text Classification? [10]
As outlined in Section 3, BERT was trained in a general domain, which has a different data distribution
than the datasets that we will use to grade your project. A natural way to improve your model would be to
further pre-train your BERT model with target-domain data. This would involve implementing and training
on the masked LM objective or predicting tokens as outlined in Section 3, using the training datasets that
we provided. For more details on BERT’s pre-training, see [1].

Multiple Negatives Ranking Loss Learning

Original Paper: Efficient Natural Language Response Suggestion for Smart Reply [11]

Another effective way of improving your embeddings would be to fine-tune your model with Multiple
Negative Ranking Loss10. With this loss function, training data consists of sets of K sentence pairs
[(a1, b1), . . . , (an, bn)] where ai, bi are labeled as similar sentences and all (ai, bj) where i ̸= j are not similar
sentences. The loss function then minimizes the distance between ai, bi while it simultaneously maximizing
the distance (ai, bj) where i ̸= j. Specifically, training is to minimize the approximated mean negative log
probability of the data. For a single batch, this is calculated as

J (x, y, θ) = − 1

K

K∑
i=1

logPapprox(yi|xi)

= − 1

K

K∑
i=1

[
S(xi, yi)− log

K∑
j=1

eS(xi,yj)
]
,

where θ represents the word embeddings and neural network parameters used to calculate S, a scoring
function. See sbert.net11 and Henderson et al. [11] for additional details.

Cosine-Similarity Fine-Tuning

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks [12]

Additional fine-tuning can further improve your BERT model on one of the pre-selected tasks. The similarity
between two embeddings is often computed using their cosine similarity. A way of potentially improving

10https://www.sbert.net/docs/package_reference/losses.html
11https://www.sbert.net/examples/training/nli/README.html#multiplenegativesrankingloss

https://www.sbert.net/docs/package_reference/losses.html
https://www.sbert.net/examples/training/nli/README.html#multiplenegativesrankingloss
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your embeddings would thus be to utilize CosineEmbeddingLoss12 while fine-tuning on the SemEval dataset.
In this setup, sentences that are the equivalent have a cosine similarity of 1 and those that are unrelated
have a cosine similarity score of 0.

Fine-Tuning with Regularized Optimization

Original paper: SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through
Principled Regularized Optimization [13]

Aggressive fine-tuning can often cause over-fitting. This can cause the model to fail to generalize to unseen
data. To combat this in a principled manner, Jiang et al. propose (1) Smoothness-inducing regularization,
which effectively manages the complexity of the model and (2) Bregman proximal point optimization, which
is an instance of a trust-region method and can prevent aggressive updating.

Smoothness-Inducing Adversarial Regularization Specifically, given the model f(·; θ) and n data
points of the target task denoted by {(xi, yi)}ni=1 where xi’s denote the embedding of the input sentences
obtained from the first embedding layer of the language model and yi’s are the associated labels, Jiang et
al.’s method essentially solves the following optimization for fine-tuning:

min
θ

= L(θ) + λsRs(θ) (6)

where L(θ) is the loss function defined as:

L(θ) = 1

n

n∑
i=1

l(f(xi; θ), yi), (7)

and l(·, ·) is the loss function depending on the target task, λs > 0 is a tuning parameters and Rs(θ) is the
smoothness-inducing regularizer defined as

Rs(θ) =
1

n

n∑
i

max
||x̃i−xi||p≤ϵ

l(f(x̃i; θ), f(xi; θ)), (8)

where ϵ > 0 is a tuning parameter. Note that for classification tasks, f(·; θ) outputs a probability simplex
and ls is chosen as the symmetrized KL-divergence, i.e.,

ls(P,Q) = DKL(P ||Q) +DKL(Q||P ) (9)

Bergman Proximal Point Optimziation Jiang et al. also propose a class of Bregman proximal point
optimization13 methods to solve Equation 6. Such optimization methods impose a strong penalty at each
iteration to prevent the model from aggressive updating. Specifically, they use a pre-trained model as the
initialization denoted by f(·; θ0). At the (t + 1)-th iteration, the vanilla Bregman proximal point (VBPP)
method takes:

θt+1 = argmin
θ
F(θ) + µDBreg(θ, θt) (10)

where µ > 0 is a tuning parameter and DBreg(·, ·) is the Bregman divergence defined as:

DBreg(θ, θt) = ls(f(x̃i; θ), f(xi; θt)) (11)

See https://github.com/namisan/mt-dnn and [13] for additional details.
12https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
13https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/bregman.pdf

https://github.com/namisan/mt-dnn
https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/bregman.pdf
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Multitask Fine-Tuning

Original paper: BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learn-
ing [14]
Original paper: MTRec: Multi-Task Learning over BERT for News Recommendation [15]
Original paper: Gradient surgery for multi-task learning. [16]

Rather than fine-tuning BERT on individual tasks, you can alternatively make use of multi-task learning to
update BERT. For example, Bi et al. [15], use multi-task learning adding together the losses on the tasks of
category classification and named entity recognition.

Ltotal = Ltask1 + Ltask2 (12)

Using multi-task learning, however, depending on how the model is fine-tuned, is not always beneficial.
Gradient directions of different tasks may conflict with one another. Yu et al. [16] recommend a technique
called Gradient Surgery that projects the gradient of the i-th task gi onto the normal plane of another
conflicting task’s gradient gi:

gi = gi −
gi · gj

||gj||2
· gj (13)

Contrastive Learning

Original paper: Simple Contrastive Learning of Sentence Embeddings [17]

Gao et al [17] proposed a simple contrastive learning framework called SimCSE that works with both un-
labeled and labeled data. Unsupervised SimCSE simply takes an input sentence and predicts itself in a
contrastive learning framework, with only standard dropout used as noise. In contrast, supervised SimCSE
incorporates annotated pairs from NLI datasets into contrastive learning by using entailment pairs as posi-
tives and contradiction pairs as hard negatives. You can utilize a similar approach to better your sentence
embeddings across your different models.

5.3.1 Parameter Efficient Finetuning Methods

Original paper: LoRA: Low-Rank Adaptation of Large Language Models [18]
Original paper: DoRA: Weight-Decomposed Low-Rank Adaptation [19]

Several techniques exist to reduce the memory usage/running time required to finetune language models,
while preserving performance. One such technique is LoRA [18], which is motivated by the hypothesis that
even during full fine-tuning, the updates to the weight matrices of the language model are essentially low
rank. Thus, given a pre-trained model, Hu, et al. [18] propose re-parameterizing the weight matrices W

of the model as W0 + BA, where W0 denotes the weight matrix obtained from pre-training, and A,B are
parameters newly added during fine-tuning. Here, if W0 is of shape d × k, then B and A will be of shapes
d× r and r× k respectively, for some r ≪ d, k. A significant advantage of this technique is that less memory
is required for the optimizer (which needs to store some state for each parameter being optimized).

It can be the case that LoRA performs worse than standard fine-tuning. Liu, et al. [19] propose DoRA, which
aims to address the cause of this. In DoRa, the pre-trained d× k weight matrix W0 is now re-parameterized
as m · V

∥V ∥c
, where V is a d × k matrix, ∥V ∥c is a 1 × k vector where the ith entry is the magnitude of the

ith column of V , and m is a 1 × k vector which contains a learnable magnitude for each column. In other
words, DoRA attempts to decouple updates to the magnitude of W0 and updates to the direction of W0.

Afterwards, the direction component V is updated using LoRA. In other words, V is itself re-parameterized
as W0 +BA, where B and A are of shape d× r and r × k respectively, for some r ≪ d, k. Afterwards, only
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B and A receive updates. To significantly reduce memory required for backpropagation, Liu, et al. propose
treating the factor 1

∥V ∥c
as a constant, and detaching it from the backpropagation graph (while otherwise

computing it as usual).

Additional Datasets

Original paper: SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through
Principled Regularized Optimization [13]

Original paper: Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks [12]

Fine-tuning the BERT model on different datasets is an additional approach that you could apply. There
are a host of different datasets and tasks that you can potentially apply to your model to get richer and
more robust embeddings. See the following for some example datasets:

• https://arxiv.org/abs/1508.05326

• http://sbert.net/datasets/paraphrases

• https://arxiv.org/abs/1704.05426

Additional input features

Although deep learning is able to learn end-to-end without the need for feature engineering, it turns out that
using the right input features (e.g., part-of-speech tag, named entity type, etc...) can still boost performance
significantly. If you implement a model like this, comment on the tradeoff between feature engineering and
end-to-end learning in your report.

Other improvements

There are many other subtle ways to improve your performance. The suggestions in this section are just
some examples; it will take time to run the necessary experiments and draw the necessary comparisons.

• Regularization. The baseline code uses dropout. You could further experiment with different values
of dropout and different types of regularization.

• Sharing weights. The baseline code outlines a way to use distinctive heads for predicting whether sen-
tences are paraphrases, their semantic similarity, and each sentence’s sentiment. You could potentially
share some layers between task heads to improve performance.

• Model size and the number of layers. With any model, you can try increasing layer size or the
number of layers.

• Optimization algorithms. The baseline uses the Adam optimizer. PyTorch supports many other
optimization algorithms. You can also try varying the learning rate.

• Ensembling. Ensembling almost always boosts performance, so try combining several of your models
together for your final submission. However, ensembles are more computationally expensive to run.

• Hyperparameter optimization. While we provide some defaults for various hyperparameters, these
do not necessarily lead to the best results. Another approach would be to perform a hyperparameter
search to find the best hyperparameters for your model.

https://arxiv.org/abs/1508.05326
http://sbert.net/datasets/paraphrases
https://arxiv.org/abs/1704.05426
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Other Approaches

The models and techniques we have presented here are far from exhaustive. There are many published papers
on both related and unrelated tasks.14 These papers may contain interesting ideas that you can apply to
build more robust and semantically rich embeddings.

14http://nlpprogress.com/

http://nlpprogress.com/
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Submission Instructions
You will submit the Extensions part of this project on Gradescope.

1. Run prepare_submit.py. This command should capture all your *.py files and prediction *.csv files
in a single zip file.

2. Verify that the generated cs224n_default_final_project_submission.zip file includes your model
predictions on the three downstream tasks in a predictions/* directory as well as all necessary code
for replicating your results.

3. Upload your cs224n_default_final_project_submission.zip file to the appropriate assignment on
Gradescope.
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6 Submitting to the Leaderboard

6.1 Overview

In addition to submitting your .zip file, you should submit your predictions on the three datsets to two
Gradescope leaderboards.15

You are allowed to submit to the dev leaderboard as many times as you like, but you will only be allowed
3 successful submissions to the test leaderboard. For your final report, we will ask you to choose a
single test leaderboard submission to consider for your final performance. Therefore, you must make at least
one submission to the test leaderboard, but be careful not to use up your test submissions before you have
finished developing your best model.

Submitting to the leaderboard is similar to submitting any other assignment on Gradescope, except that
your submission is a CSV file of predictions on the dev/test set. At a high level, the submission file for the
SST dataset should look like the following:

id, Predicted_Sentiment

001fefa37a13cdd53fd82f617, 4

00415cf9abb539fbb7989beba, 2

00a4cc38bd041e9a4c4e545ff, 1

...

fffcaebf1e674a54ecb3c39df, 3

The submission file for the STS dataset should look like the following:

id, Predicted_Similarity

8f4d49b9f4558f9e45423e84c, 1.000

1c5cd37407630a3ba19a0f2ad, 0.4051

318c885e36cc9e6f6bb7de7dd, 0.2138

...

4e1ef3b635d01039a8a8f059b, 0.7462

The submission file for the Paraphrase dataset should look like the following:

id, Predicted_Is_Paraphrase

872887985e1e0f2dd5b690ffd, 1

472398907a6adb9ed2f660550, 0

c3ceaaed421cc008282efdf8a, 0

...

5e10dfc4ac8ae205f3e114445, 1

The header is required as well as the first column being a 25-digit hexadecimal ID for each example (IDs
defined in each of the respective test/dev files), and the last column is your predicted answer (or the empty
string for no answer). The rows can be in any order. You must submit a prediction for every example.

6.2 Submission Steps

Here are the concrete steps for submitting to the leaderboard:

1. Generate prediction .csv files using your multitask BERT model.
15We will display the accuracy of your final model on the SST test/dev dataset, the accuracy of your model on the Quora

test/dev dataset, the Pearson score for your model on the STS SemEval test/dev dataset, as well as an aggregate score across
all three tasks.
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2. Choose the correct leaderboard for your split (DEV vs. TEST).

3. Upload your submission and wait for your scores. The submission output will tell you the submission’s
accuracies/Pearson correlation on the dev/test datasets. It will also display your current performance’s
delta w.r.t. your best submission. Your placement on the leaderboard is according to your best
submission, not necessarily your most recent submission.

There should be useful error messages if anything goes wrong. If you get an error that you do not understand,
please make a post on Ed.
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7 Grading Criteria

The final project will be graded holistically. This means we will look at many factors when determining your
grade: the creativity, complexity, and technical correctness of your approach, your thoroughness in exploring
and comparing various approaches, the strength of your results, the effort you applied, and the quality of
your write-up, evaluation, and error analysis. Generally, implementing more complicated models represents
more effort, and implementing more unusual models (e.g., ones that we have not mentioned in this handout)
represents more creativity. You are not required to pursue original ideas, but the best projects in this class
will go beyond the ideas described in this handout and may in fact become published work themselves!

As in previous years, for Part 2 of this project, an aspect of your grade will be your performance relative
to the leaderboard as a whole across all tasks. Note that the strength of your results on the leaderboard is
only one of the many factors we consider in grading. Our focus is on evaluating your well-reasoned research
questions, explanations, and experiments that clearly evaluate those questions.

There is no pre-defined accuracy (SST, Quora) or Pearson score (SemEval) to ensure a good grade. Similarly,
there is no pre-defined rule for which of the extensions in Section 5 (or elsewhere) will ensure a good grade.
Implementing a small number of things with good results and thorough experimentation/analysis is better
than implementing a large number of things that don’t work or barely work. In addition, the quality of your
write-up and experimentation is important: we expect you to convincingly show that your techniques are
effective and describe why they work (or clearly elucidate reasoning for the cases that don’t work).

As with all final projects, larger teams are expected to do correspondingly larger projects. We will expect
more complex things implemented, more thorough experimentation, and better results from teams with more
people.
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8 Honor Code

Any honor code guidelines that apply to the custom final project in general also apply to the default final
project. Here are some guidelines that are specifically relevant to the default final project:

1. You may not use a pre-existing implementation of minBERT.

2. You are not allowed to use pre-trained contextual embeddings (such as ELMO, GPT, etc) for your
system. You are allowed to use other pre-existing NLP tools such as a POS tagger, dependency parser,
and coreference module that are not built on top of pre-trained contextual embeddings.

3. You are free to discuss ideas and implementation details with other teams (in fact, we encourage it!).
However, under no circumstances may you look at another CS 224N team’s code or incorporate their
code into your project.

4. As described elsewhere, it is an honor code violation to use the official SST, Quora, or SemEval datasets
in any way.

5. Do not share your code publicly (e.g., in a public GitHub repo) until after the class has finished.
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