Clustering

The Problem of Clustering

◆ Given a set of points, with a notion of distance between points, group the points into some number of *clusters*, so that members of a cluster are in some sense as nearby as possible.

2

Applications

- ◆E-Business-related applications of clustering tend to involve very highdimensional spaces.
 - The problem looks deceptively easy in a 2-dimensional, Euclidean space.

4

Example: Clustering CD's

- Intuitively, music divides into categories, and customers prefer one or a few categories.
 - But who's to say what the categories really are?
- ◆ Represent a CD by the customers who bought it.
- ◆Similar CD's have similar sets of customers, and vice-versa.

The Space of CD's

- ◆Think of a space with one dimension for each customer.
 - Values 0 or 1 only in each dimension.
- ♦A CD's point in this space is (x1, x2,...,xk), where xi = 1 iff the ith customer bought the CD.
 - Compare with the "correlated items" matrix: rows = customers; cols. = CD's.

6

Distance Measures

- ◆Two kinds of spaces:
 - Euclidean: points have a location in space, and dist(x,y) = sqrt(sum of square of difference in each dimension).
 - Some alternatives, e.g. Manhattan distance = sum of magnitudes of differences.
 - Non-Euclidean: there is a distance measure giving dist(x,y), but no "point location."
 - Obeys triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$.
 - Also, d(x,x) = 0; $d(x,y) \ge 0$; d(x,y) = d(y,x).

Examples of Euclidean Distances

8

Non-Euclidean Distances

- ◆ Jaccard measure for binary vectors = ratio of intersection (of components with 1) to union.
- ◆ Cosine measure = angle between vectors from the origin to the points in question.

9

Jaccard Measure

- **♦**Example: $p_1 = 00111$; $p_2 = 10011$.
 - Size of intersection = 2; union = 4, J.M. = 1/2
- Need to make a distance function satisfying triangle inequality and other laws.
- \bigstar dist(p₁,p₂) = 1 J.M. works.
 - dist(x,x) = 0, etc.

10

Cosine Measure

- ◆Think of a point as a vector from the origin (0,0,...,0) to its location.
- ◆Two points' vectors make an angle, whose cosine is the normalized dotproduct of the vectors.
 - Example $p_1 = 00111$; $p_2 = 10011$.
 - $p_1.p_2 = 2$; $|p_1| = |p_2| = sqrt(3)$.
 - cos(1) = 2/3.

11

Cosine-Measure Diagram

Methods of Clustering

- ◆Hierarchical:
 - Initially, each point in cluster by itself.
 - Repeatedly combine the two "closest" clusters into one.
- ◆Centroid-based:
 - Estimate number of clusters and their centroids.
 - Place points into closest cluster.

и

Hierarchical Clustering

- ◆Key problem: as you build clusters, how do you represent the location of each cluster, to tell which pair of clusters is closest?
- ◆Euclidean case: each cluster has a centroid = average of its points.
 - Measure intercluster distances by distances of centroids.

15

And in the Non-Euclidean Case?

- ◆The only "locations" we can talk about are the points themselves.
- ◆Approach 1: Pick a point from a cluster to be the *clustroid* = point with minimum maximum distance to other points.
 - Treat clustroid as if it were centroid, when computing intercluster distances.

17

Example clustroid 1 2 6 4 5 clustroid intercluster distance

Other Approaches

- ◆Approach 2: let the intercluster distance be the minimum of the distances between any two pairs of points, one from each cluster.
- ◆Approach 3: Pick a notion of "cohesion" of clusters, e.g., maximum distance from the clustroid.
 - Merge clusters whose combination is most cohesive.

19

k-Means

- ◆Assumes Euclidean space.
- ◆Starts by picking *k*, the number of clusters.
- ◆Initialize clusters by picking one point per cluster.
 - For instance, pick one point at random, then k-1 other points, each as far away as possible from the previous points.

20

Populating Clusters

- ◆For each point, place it in the cluster whose centroid it is nearest.
- ◆After all points are assigned, fix the centroids of the *k* clusters.
- ◆Reassign all points to their closest centroid.
 - Sometimes moves points between clusters.

21

Example

22

How Do We Deal With Big Data?

- ◆Random-sample approaches.
 - E.g., CURE takes a sample, gets a rough outline of the clusters in main memory, then assigns points to the closest cluster.
- ◆BFR (Bradley-Fayyad-Reina) is a *k*-means variant that compresses points near the center of clusters.
 - Also compresses groups of "outliers."

23