Clustering

The Problem of Clustering

@ Given a set of points, with a notion of
distance between points, group the
points into some number of clusters, so
that members of a cluster are in some
sense as nearby as possible.

Example
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Applications

@ E-Business-related applications of
clustering tend to involve very high-
dimensional spaces.

+ The problem looks deceptively easy in a 2-
dimensional, Euclidean space.

Example: Clustering CD’s

@ Intuitively, music divides into
categories, and customers prefer one or
a few categories.

+ But who's to say what the categories really
are?

@®Represent a CD by the customers who
bought it.

@ Similar CD’s have similar sets of
customers, and vice-versa.

The Space of CD’s

@ Think of a space with one dimension
for each customer.
+ Values 0 or 1 only in each dimension.
@A CD’s point in this space is
(x1,X2,...,X), where xi = 1 iff the /th
customer bought the CD.

+ Compare with the “correlated items”
matrix: rows = customers; cols. = CD's.




Distance Measures

4 Two kinds of spaces:

+ Euclidean: points have a location in space, and
dist(x,y) = sqrt(sum of square of difference in
each dimension).

* Some alternatives, e.g. Manhattan distance = sum of
magnitudes of differences.

+ Non-Euclidean: there is a distance measure
giving dist(x,y), but no “point location.”

* Obeys triangle inequality: d(x,y) < d(x,z)+d(z,y).
e Also, d(x,x) = 0; d(x,y) > 0; d(x,y) = d(y,x).

Examples of Euclidean Distances

L2-norm: y=0.8)
dist(x,y) =
sOrt(42+3?)
=5
L1-norm:
dist(x,y) =
x=(5.5) 443 =7

Non-Euclidean Distances

@ Jaccard measure for binary vectors =
ratio of intersection (of components
with 1) to union.

@ Cosine measure = angle between
vectors from the origin to the points in
question.

Jaccard Measure

®Example: p, = 00111; p, = 10011,

+ Size of intersection = 2; union = 4, J.M.
1/2.

®Need to make a distance function
satisfying triangle inequality and other
laws.

@ dist(p,,p,) = 1 - J.M. works.
« dist(x,x) = 0, etc.

Cosine Measure

@ Think of a point as a vector from the
origin (0,0,...,0) to its location.

@ Two points’ vectors make an angle,
whose cosine is the normalized dot-
product of the vectors.

+ Example p; = 00111; p, = 10011.
* P1-P2 = 2; |pyl = Ip,| = sart(3).
* cos(B) = 2/3.
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Cosine-Measure Diagram
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Methods of Clustering

@ Hierarchical:
« Initially, each point in cluster by itself.

+ Repeatedly combine the two “closest”
clusters into one.

@ Centroid-based:

+ Estimate number of clusters and their
centroids.

+ Place points into closest cluster.

Hierarchical Clustering

@ Key problem: as you build clusters, how
do you represent the location of each
cluster, to tell which pair of clusters is
closest?

@®Euclidean case: each cluster has a
centroid = average of its points.

+ Measure intercluster distances by distances
of centroids.
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And in the Non-Euclidean Case?

@ The only “locations” we can talk about
are the points themselves.

@ Approach 1: Pick a point from a cluster
to be the dlustroid = point with
minimum maximum distance to other
points.

+ Treat clustroid as if it were centroid, when
computing intercluster distances.
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Other Approaches

@ Approach 2: let the intercluster
distance be the minimum of the
distances between any two pairs of
points, one from each cluster.

@ Approach 3: Pick a notion of “cohesion”
of clusters, e.g., maximum distance
from the clustroid.

+ Merge clusters whose combination is most
cohesive.
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k-Means

@ Assumes Euclidean space.

@ Starts by picking &, the number of
clusters.

@ Initialize clusters by picking one point
per cluster.

+ For instance, pick one point at random,
then k-1 other points, each as far away as
possible from the previous points.

Populating Clusters

@ For each point, place it in the cluster
whose centroid it is nearest.

@ After all points are assigned, fix the
centroids of the & clusters.

@ Reassign all points to their closest
centroid.
+ Sometimes moves points between clusters.
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How Do We Deal With Big Data?

®Random-sample approaches.

+ E.g., CURE takes a sample, gets a rough
outline of the clusters in main memory,
then assigns points to the closest cluster.

@BFR (Bradley-Fayyad-Reina) is a &
means variant that compresses points
near the center of clusters.

+ Also compresses groups of “outliers.”
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