Outline

- Privacy
- •Collaborative Game Theory
- •Clustering

Christos H. Papadimitriou with Jon Kleinberg and P. Raghavan www.cs.berkeley.edu/~christos

What is privacy?

- •one of society's most vital concerns
- •central for e-commerce
- •arguably the most crucial and far-reaching current challenge and mission of CS
- •least understood scientifically (e.g., is it rational?)
- see, e.g., www.sims.berkeley.edu/~hal, ~/pam,
- [Stanford Law Review, June 2000]

CS206: May 9, 2002

May 9, 2002

some thoughts on privacy

- also an economic problem
- surrendering private information is either good or bad for you
- example: privacy vs. search costs in computer purchasing

CS206: May 9, 2002

thoughts on privacy (cont.)

- personal information is intellectual property controlled by others, often bearing negative royalty
- selling mailing lists vs. selling aggregate information: false dilemma
- Proposal: Take into account the individual's utility when using personal data for decisionmaking

CS206: May 9, 2002

e.g., marketing survey "likes" • company's utility is proportional to the majority • customer's utility is 1 if in the majority • how should all participants be compensated? CS206: May 9, 2002 5

Collaborative Game Theory

• How should A, B, C Values of v split the loot (=20)? • A: 10 We are given what • B: 0 each subset can • C: 6 achieve by itself as a • AB: 14 function v from the • BC: 9 powerset of {A,B,C} • AC: 16 to the reals • ABC: 20 • $v(\{\}) = 0$

first idea (notion of "fairness"): the core

A vector $(x_1, x_2,..., x_n)$ with $\Sigma_i x_i = v([n])$ (= 20) is in the core if for all S we have $x[S] \ge v(S)$

In our example: A gets 11, B gets 3, C gets 6

Problem: Core is often empty (e.g., AB * 15)

CS206: May 9, 2002

second idea: the Shapley value

 $x_i = \mathrm{E}_{\pi}(v[\{j: \pi(j) \le \pi(i)\}] - v[\{j: \pi(j) < \pi(i)\}])$

(Meaning: Assume that the agents arrive at random. Pay each one his/her contribution. Average over all possible orders of arrival.)

Theorem [Shapley]: The Shapley value is the only allocation that satisfies Shapley's axioms.

CS206: May 9, 2002

In our example...

• A gets:	Values o	of v
10/3 + 14/6 + 10/6 +	• A:	10
11/3 = 11	• B:	0
• B gets:	• C:	6
0/3 + 4/6 + 3/6 + 4/3 = 2.5	• AB:	14
• C gets the rest = 6.5	• BC:	9
NB: Split the cost of a	• AC:	16
trip among hosts	• ABC:	20

CS206: May 9, 2002

e.g., the UN security council

- 5 permanent, 10 non-permanent
- A resolution passes if voted by a majority of the 15, including all 5 P
- v[S] = 1 if |S| > 7 and S contains 1,2,3,4,5; otherwise 0
- What is the Shapley value (~power) of each P member? Of each NP member?

CS206: May 9, 2002

e.g., the UN security council

- What is the probability, when you are the 8th arrival, that all of 1,...,5 have arrived?
- Ans: Choose(10,2)/Choose(15,7) ~ .7% Permanent members: ~ 18%

Therefore, P

NP

CS206: May 9, 2002

third idea: bargaining set fourth idea: nucleolus

•

seventeenth idea: the von Neumann-Morgenstern solution

[Deng and P. 1990] complexity-theoretic critique of solution concepts

Applying to the market survey problem

- Suppose largest minority is r
- An allocation is in the core as long as losers get 0, vendor gets > 2r, winners split an amount up to twice their victory margin
- (plus another technical condition saying that split must not be too skewed)

CS206: May 9, 2002

market survey problem: Shapley value

- Suppose margin of victory is at least $\mathbb{M}_{\downarrow} > 0\%$
- (realistic, close elections never happen in real life)
- Vendor gets m(1+M)
- Winners get 1+ M
- Losers get M
- (and so, no compensation is necessary)

e.g., recommendation system

- Each participant i knows a set of items B_i
- Each benefits 1 from every new item
- Core: empty, unless the sets are disjoint!
- Shapley value: For each item you know, you are owed an amount equal to 1 / (#people who know about it)
 - --i.e., novelty pays

CS206: May 9, 2002

e.g., collaborative filtering

- Each participant likes/dislikes a set of items (participant is a vector of 0, \$\phi 1)
- The "similarity" of two agents is the inner product of their vectors
- There are k "well separated types" (vectors of \$\phi\$1), and each agent is a random perturbation and random masking of a type

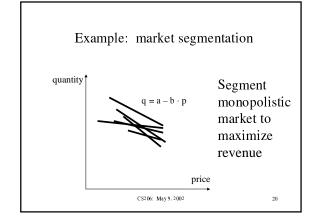
CS206: May 9, 2002

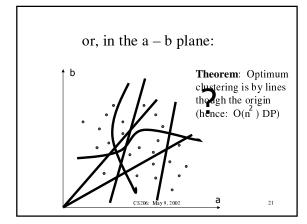
collaborative filtering (cont.)

- An agent gets advice on a 0 by asking the most similar other agent who has a \$\phi\$1 in that position
- Value of this advice is the product of the agent's true value and the advice.
- How should agents be compensated (or charged) for their participation?

CS206: May 9, 2002

collaborative filtering (result)


Theorem: An agent's compensation (= value to the community) is an increasing function of how typical (close to his/her type) the agent is.


The economics of clustering

- The practice of clustering: Confusion, too many criteria and heuristics, no guidelines
- The theory of clustering: ditto!
- "It's the economy, stupid!"
 [Kleinberg, P., Raghavan STOC 98, JDKD 99]

CS206: May 9, 2002

ay 9, 2002

So...

- Privacy has an interesting (and,I think, central) economic aspect
- Which gives rise to neat math/algorithmic problems
- Architectural problems wide open
- And clustering is a meaningful problem only in a well-defined economic context