
CS205b/CME306

Lecture 9

1 Convection

Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3,
10.2, 10.4. For a reference on Newton polynomial interpolation via divided difference tables, see
Heath, Scientific Computing, Section 7.3.3.

Reference: Osher and Fedkiw, Section 3.1

There are two different approaches we can take in describing fluid motion.

Lagrangian In the Lagrangian formulation, we follow the motion of individual particles as they
are advected by the flow. Assuming that a velocity u(x) = 〈u, v,w〉 is known for every point x we
can compute the particle motion by solving the ordinary differential equation (ODE)

dx

dt
= u(x).

This approach is simple, and the equation is easy to solve numerically. However, it is difficult to
apply it to nonlinear phenomena such as shock waves. In general, Lagrangian formulations are
most often used in solid mechanics problems.

Eulerian Recall that in the Eulerian formulation the simple convection (or advection) equation
is

φt + u · ∇φ = 0, (1)

where φ is the quantity being advected. Recall that ∇ is the gradient operator, and that u · ∇φ =
uφx+vφy +wφz. The Eulerian approach can be thought of as sitting still at a point x and observing
the changes in φ at that point due to the flow. Eulerian formulations are most often used in fluid
dynamics problems.

1.1 Upwind Differencing

Reference: Osher and Fedkiw, Section 3.2

In the notes that follow we will always denote the time step in the superscript, and the spatial
indices in the subscripts. Thus, φn

i is the value of φ at grid location i at time n.

1

1.1.1 Temporal Discretization

We look at some possible discretizations for the time derivatives in the convection equation. The
equations below are called semi-discrete because we have discretized only the time derivative.

• Forward Euler

φn+1 − φn

∆t
+ un · ∇φn = 0 (2)

• Backward Euler

φn+1 − φn

∆t
+ un+1 · ∇φn+1 = 0 (3)

We call forward Euler is an explicit scheme, since it is often written with the quantity φn+1 to be
determined explicitly written in terms of known quantities. We call backward Euler an implicit
scheme, since the quantity φn+1 to be determined is expressed implicitly in terms of itself and must
be solved. Both forward and backward Euler are first order accurate, meaning that the error in
both discretizations is O(∆t).

1.1.2 Spatial Discretization

We begin by writing equation 2 in expanded form

φn+1 − φn

∆t
+ unφn

x + vnφn
y + wnφn

z = 0 (4)

and address the evaluation of the unφn
x term first. The techniques used to approximate this term

can then be applied independently to the vnφn
y and wnφn

z terms in a dimension by dimension
manner. For simplicity, consider the one dimensional version of equation 4

φn+1 − φn

∆t
+ unφn

x = 0

where the sign of un indicates whether the values of φ are moving to the right or to the left. Since
un can be spatially varying, we focus on a specific grid point xi where we write

φn+1
i − φn

i

∆t
+ un

i (φx)ni = 0.

We use the forward Euler discretization in time. This means that we can solve the equations for
each grid point independently, and we will not have to solve a linear system at each time step as
in the case of backward Euler.

We first introduce the difference operators Do, D+ and D−.

• Do, central difference operator (second-order accurate)

(Doφ)i =
φi+1 − φi−1

2∆x

2

• D+, forward difference operator (first-order accurate)

(D+φ)i =
φi+1 − φi

∆x

• D−, backward difference operator (first-order accurate)

(D−φ)i =
φi − φi−1

∆x

For hyperbolic equations, information is propagated in specific directions (along the character-
istic curves). Therefore central differencing, which uses information from both directions, is not
very useful for numerically solving hyperbolic problems. Instead we prefer to use upwinding. In
upwinding the idea is to choose the spatial discretization based on the direction that information
is propagating. For the one-dimensional case,

if ui > 0, we use D−φ
if ui < 0, we use D+φ
if ui = 0, then uiφx = 0, so we do not need to approximate φx

Upwinding is first-order accurate. If we instead choose the difference operators so that data is
taken from the direction opposite the one from which it is propagating, then we are using down-

winding, which is unstable.
The numerical errors resulting from upwind differencing cause dissipation in the numerical

solution. The numerical errors resulting from central differencing cause dispersion in the numerical
solution (for more information see Strikwerda, Chapter 5).

In any numerical method for solving PDEs, we must ultimately be concerned with convergence.
The means that as we refine our grid in time and space, the numerical solution converges to an
analytical solution. To this end we examine the notions of consistency and stability. For precise
definitions of convergence, consistency, and stability, see Strikwerda, Chapter 1. If a scheme is
consistent, the errors in approximating the differential operator vanish as ∆t, ∆x → 0. This is
typically proved by assuming a sufficiently smooth solution and using a Taylor series expansion. If
the scheme is stable, the solution does not blow up in a finite time. Stability may be unconditional
or conditional. In conditional stability, we have restrictions on the value of ∆t.

It is possible to meet one but not both of these conditions. For example, it can be shown that
discretizing the scalar, linear, constant-coefficient convection equation given above using central
differencing in space and forward Euler in time is consistent, but unstable.

The Lax-Richtmyer Equivalence Theorem states that, given a consistent finite difference ap-
proximation to a linear partial differential equation, the approximation is convergent if and only if
it is stable.

A necessary (but not sufficient) condition for convergence for all PDEs is the Courant-Friedreichs-

Lewy condition (CFL condition), which asserts that the numerical domain of dependence1 for each
point must contain the physical domain of dependence. In the case of the advection equation, this
implies that numerical waves must propagate at least as fast as physical waves, i.e. the numerical

1The domain of dependence for a point is the set of points that have an effect on the value of the solution of that

point

3

wave speed ∆x/∆t must be at least as fast as the physical wave speed |u|. This leads us to the
CFL time step restriction of

∆t <
∆x

max{|u|}

where max{|u|} is chosen to be the largest value of |u| over the entire Cartesian grid. In practice
this is usually enforced by choosing a CFL number α with

∆t

(

max{|u|}

∆x

)

= α

and 0 < α < 1. A common near optimal choice is α = .9, and a common conservative choice is
α = .5. A multidimensional CFL condition can be written as

∆t max

{

|u|

∆x
+

|v|

∆y
+

|w|

∆z

}

= α

although

∆t

(

max{|u|}

min{∆x,∆y,∆z}

)

= α

is also frequently used in practice, despite the fact that it is incorrect.
Instead of upwinding, the spatial derivatives in equation 1 could be approximated with the more

accurate central differencing method. Unfortunately, simple central differencing is unstable with
forward Euler time discretization and the usual CFL conditions with ∆t ∼ ∆x. We look at three
possible ways of achieving stability while using central differencing.

1. Stability can be achieved by using a much more restrictive CFL condition with ∆t ∼ (∆x)2.
However, this is usually too computationally costly.

2. Stability can also be achieved by using a different temporal discretization, e.g. the third order
accurate Runge-Kutta method.

3. A third way of achieving stability consists of adding some artificial viscosity to the right hand
side of equation 1 to obtain

φt + u · ∇φ = µ∆φ

where the viscosity coefficient µ is chosen proportional to ∆x, i.e. µ ∼ ∆x, so that the
artificial viscosity vanishes as ∆x → 0 enforcing consistency for this method.

While all three of these approaches stabilize central differencing, we instead prefer to use upwind
methods.

1.2 Higher Order Accuracy

In the previous sections we started with a PDE and discretized it to construct a numerical method.
For convergence, we require that the numerical method be both consistent and stable, possibly
imposing conditions on the time step (e.g., ∆t < α∆x) to achieve stability. Now we look at some
higher order accurate discretizations. Our goal in using higher order accurate methods is to improve
upon consistency. The order of accuracy of the method refers to the order of the local truncation
error resulting from the discretization. That is, a method with O(∆xn) is considered to be have
spatial order of accuracy n. Note too that the local truncation error may also contain mixed terms
like O(∆t∆x).

4

1.2.1 TVD Runge-Kutta

To achieve higher order accuracy in the temporal discretization, one can use Total Variation Dimin-

ishing (TVD) Runge-Kutta (RK) methods. These methods guarantee that the total variation of
the solution does not increase, so that no new extrema are generated. For example, if our solution
represents a temperature profile, spurious oscillations caused by the numerical method may trigger
a chemical reaction in our simulation; using a TVD method would guarantee that such oscillations
do not occur. A related concept is that of Total Variation Bounded (TVB) methods, where the
growth of the total variation is bounded. Both concepts are related to stability. W consider 1st
order, 2nd order, and 3rd order TVD RK.

• 1st order

The 1st order TVD RK method is identical to forward Euler and 1st order RK. It is given by

φn+1 − φn

∆t
+ un · ∇φn = 0.

• 2nd order

The 2nd order TVD RK method is also known as 2nd order RK, the midpoint rule, modified
Euler, and Heun’s predictor-corrector method.

First, an Euler step is taken to advance the solution to time tn+1

φ̂n+1 − φn

∆t
+ un · ∇φn = 0.

This is followed by a second Euler step to advance the solution to time tn+2

φ̂n+2 − φ̂n+1

∆t
+ un+1 · ∇φ̂n+1 = 0.

Finally, a convex combination of the original and produced values is taken

φn+1 =
φn + φ̂n+2

2

to produce the second order accurate TVD approximation to φ at time tn+1.

• 3rd order

First, an Euler step is taken to advance the solution to time tn+1

φ̂n+1 − φn

∆t
+ un · ∇φn = 0.

This is followed by a second Euler step to advance the solution to time tn+2

φ̂n+2 − φ̂n+1

∆t
+ un+1 · ∇φ̂n+1 = 0.

5

This is followed by an averaging step

φ̂n+ 1

2 =
3

4
φn +

1

4
φ̂n+2

that produces an approximation to φ at time tn + 1
2
∆t. Then another Euler step is taken to

advance the solution to time tn + 3

2
∆t

φ̂n+ 3

2 − φ̂n+ 1

2

∆t
+ un+ 1

2 · ∇φ̂n+ 1

2 = 0

and is followed by a second averaging step

φn+1 =
1

3
φn +

2

3
φ̂n+ 3

2

that produces a third order accurate approximation to φ at time tn+1. This third order
accurate TVD RK method has a stability region that includes part of the imaginary axis.
Thus, a stable (though ill-advised) numerical method results from combining third order
accurate TVD RK with central differencing.

1.2.2 Hamilton-Jacobi ENO

Recall that in the first order accurate upwind differencing, we approximate the spatial derivative
as follows:

If ui > 0, use φ−

x ≈ D−φ = φi−φi−1

∆x

If ui < 0, use φ+
x ≈ D+φ = φi+1−φi

∆x
If ui = 0, then uiφx = 0, so we do not need an approximation.
This scheme can be improved upon by using a more accurate approximation for φ−

x and φ+
x .

The simplest way to approximate the spatial derivative is to assume that the function is piecewise
linear. This is what the approximations D+ and D− do. However, we could also pass a parabola
or higher order polynomial through the data points. We can then differentiate the interpolated
polynomial to get the derivative.

The general idea behind essentially non-oscillatory (ENO) schemes is to use a higher order
accurate polynomial to reconstruct φ and then differentiate it to get an approximation to φx. A
different such polynomial is constructed at each grid point. The key to the algorithm is to choose
the neighboring points for the interpolation so that we are not interpolating across steep gradients.

We describe the implementation of the HJ ENO method, in which we perform Newton polyno-
mial interpolation via a divided difference table. The Newton polynomial interpolating a given set
of n data points, (x1, φ1), (x2, φ2), . . . , (xn, φn) has the form

Pn−1(x) = α0 + α1(x − x1) + · · · + αn−1(x − x1) · · · (x − xn−1).

The coefficients, αj , are the entries in the divided difference table. We use the notation, Dk
i to

represent the kth divided difference at grid point i. The first few levels of the divided difference

6

table are constructed as follows:

D0
i φ = φi

D1

i+ 1

2

φ =
D0

i+1φ − D0
i φ

∆x

D2
i φ =

D1

i+ 1

2

φ − D1

i− 1

2

φ

2∆x

D3

i+ 1

2

φ =
D2

i+1φ − D2
i φ

3∆x
...

...
...

Note that the 0th level is defined at grid nodes, the first level is midway between grid nodes, the
third level at grid nodes, and so on. Also from the above table we can see that D1

i+ 1

2

φ = (D+φ)i

and D1

i− 1

2

φ = (D−φ)i.

The divided differences are used to reconstruct a polynomial of the form

φ(x) = Q0(x) + Q1(x) + Q2(x) + Q3(x)

that can be differentiated and evaluated at xi to find (φ−

x)i and (φ+
x)i. That is, we use

φx(xi) = Q′

1(xi) + Q′

2(xi) + Q′

3(xi)

to define (φ−

x)i and (φ+
x)i. Note that the constant Q0(x) term vanishes upon differentiation.

To find φ−

x we start with k = i − 1, and to find φ+
x we start with k = i. Then we define

Q1(x) = (D1
k+1/2φ)(x − xi)

so that
Q′

1(xi) = D1

k+ 1

2

φ

implying that the contribution from Q′

1(xi) in equation 1.2.2 is the backward difference in the case
of φ−

x and the forward difference in the case of φ+
x . In other words, first order accurate polynomial

interpolation is exactly first order upwinding. Improvements are obtained by including the Q′

2(xi)
and Q′

3(xi) terms in equation 1.2.2 leading to second and third order accuracy, respectively.
Looking at the divided difference table and noting that D1

k+1/2
φ was chosen for first order

accuracy, we have two choices for the second order accurate correction. We could include the next
point to the left and use D2

kφ, or we could include the next point to the right and use D2
k+1φ. The

key observation is that smooth, slowly varying data tends to produce small numbers in divided
difference tables, whereas discontinuous or quickly varying data tends to produce large numbers in
divided difference tables. This is obvious in the sense that the differences measure variation in the
data. We would like to avoid interpolating near large variations such as discontinuities or steep
gradients, since they cause overshoots in the interpolating function leading to numerical errors in
the approximation of the derivative. Thus, if |D2

kφ| ≤ |D2
k+1

φ| we set c = D2
kφ and k⋆ = k − 1,

otherwise we set c = D2
k+1

φ and k⋆ = k. Then we define

Q2(x) = c(x − xk)(x − xk+1)

7

x− ∆tu

x

φ,u

∆tu

Figure 1: Data movement for semi-Lagrangian advection.

so that
Q′

2(xi) = c(2(i − k) − 1)∆x

is the second order accurate correction to the approximation of φx in equation 1.2.2. If we stop
here, i.e. omitting the Q3 term, we have a second order accurate method for approximating φ−

x

and φ+
x . Note that we have not yet used k⋆. This is because it is only necessary when calculating

the third order accurate correction.
Similar to the second order accurate correction, the third order accurate correction is obtained by

comparing |D3
k⋆+1/2

φ| and |D3
k⋆+3/2

φ|. If |D3
k⋆+1/2

φ| ≤ |D3
k⋆+3/2

φ| we set c⋆ = D3
k⋆+1/2

φ, otherwise

we set c⋆ = D3
k⋆+3/2

φ. Then we define

Q3(x) = c⋆(x − xk⋆)(x − xk⋆+1)(x − xk⋆+2)

so that
Q′

3(xi) = c⋆
(

3(i − k⋆)2 − 6(i − k⋆) + 2
)

∆x2

is the third order accurate correction to the approximation of φx in equation 1.2.2.

1.3 Semi-Lagrangian Advection

Previously we discretized the equation

φt + u · ∇φ = 0

using e.g. 3rd order TVD RK for the temporal derivative and 3rd order ENO in a dimension by
dimension approach for the spatial derivative. Here we consider an alternative which is lower order,
but not dimension by dimension. This is called the method of characteristics.

To determine a new value for φ at time step n + 1, we look back in the direction u a distance
∆t‖u‖ as shown in Figure 1. The new value of φ is given by

φn+1(x) = φn(x − ∆tu)

The point x−∆tu is generally not a grid point. To get a value for φ at that point, we use linear
interpolation in 1D (bilinear interpolation in 2D, or trilinear interpolation in 3D). Let us look at
the interpolation in detail in 1D. Assume that the point xj − u∆t lies between grid points xi and
xi+1, and that its distance from grid point xi is s. Therefore its distance from grid point xi+1 is
∆x − s. Then linear interpolation gives

φn+1
j =

(

1 −
s

∆x

)

φn
i +

s

∆x
φn

i+1

8

Since 0 ≤ s ≤ ∆x, we have 1 − s
∆x ≥ 0 and s

∆x ≥ 0. Then

φn+1
j =

(

1 −
s

∆x

)

φn
i +

s

∆x
φn

i+1 ≤
(

1 −
s

∆x

)

max
(

φn
i , φn

i+1

)

+
s

∆x
max

(

φn
i , φn

i+1

)

= max
(

φn
i , φn

i+1

)

and

φn+1
j =

(

1 −
s

∆x

)

φn
i +

s

∆x
φn

i+1 ≥
(

1 −
s

∆x

)

min
(

φn
i , φn

i+1

)

+
s

∆x
min

(

φn
i , φn

i+1

)

= min
(

φn
i , φn

i+1

)

.

No new extrema are introduced, since

min
(

φn
i , φn

i+1

)

≤ φn+1
j ≤ max

(

φn
i , φn

i+1

)

This fact is important for unconditional stability. For example, it immediately implies that the
method is unconditionally stable in the max norm. This stability is a simple consequence of ob-
taining new values by copying interpolated values. Since linear, bilinear, and trilinear interpolation
never create new extrema, semi-Lagrangian advection also does not. Note, however, that higher
order interpolation can create new extrema. We may obtain higher order be using a more accu-
rate estimate for the characteristic and higher order interpolation that is clamped to prevent new
extrema.

9

