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Lecture 6

1 Springs

1.1 1D Mass Spring System

We begin with a 1D mass spring system consisting of a line of n points with mass m and n − 1
identical springs connecting them. For a particular spring si, let xi, xi+1, vi, and vi+1 be the position
and velocity for the left and right ends of the spring. Let ∆x = xi+1 − xi and ∆v = vi+1 − vi. As
with the simple spring with a fixed endpoint, the force expected will be

F = −ks

(

∆x

ℓ0

− 1

)

− kd∆v.

Note that translating the spring and examining it at a different point in space do not affect the
force that it applies, so we may observe the spring from the position xi of the left endpoint moving
at its velocity vi. From this vantage point, the spring looks similar to the simple spring with
its non-fixed endpoint at location ∆x with velocity ∆v. (The system is different, though, in that
neither endpoint is fixed. In particular, it will respond differently to the force applied by the spring.
This does not affect the force the spring exerts, though.) Note that this is the force the spring
applies to the right endpoint. The force applied to the left endpoint is −F as required by Newton’s
third law. The frequency of the system is λ in Hertz (s−1), and the sound speed is c = ℓ0λ, in
ms−1. The sound speed looks like

c = ℓ0

√

ks

mℓ0

=

√

ksℓ0

m
.

To get more accuracy, we may want to refine this discretization. We would like to double the
number of points to 2n, which increases the number of springs to 2n − 1 ∼ 2(n − 1). To keep the
total mass constant, we must replace the n nodes with mass m with 2n nodes with mass m̂ = m/2.
To keep the length constant, we must replace the n − 1 springs of length ℓ0 with 2n − 1 springs of
length ℓ̂0 = n−1

2n−1
ℓ0 ∼ ℓ0/2. The Young’s modulus ks is a characteristic of the material and does
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Figure 1: Row of springs.
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not change. Ignoring the fencepost problem, the sound speed ĉ =
√

ksℓ0/m = c then remains the
same, and the frequency λ doubles to

λ̂ = 2λ ∼ 2

√

ks

mℓ0

.

Note that halving the spring length but keeping the same sound speed forces the frequency to
double, since information must travel through twice as many springs in the same amount of time.
Since ∆tλ ≈ 1, the stable time step size ∆t is halved to ∆̂t = ∆t/2 due to the refinement. The
fraction x/ℓ0 that the material compresses or stretches does not change under the refinement, since
both x and ℓ0 are both halved. The resulting elastic force and acceleration for a refined spring are

F̂ = −ks

(

x/2

ℓ0/2
− 1

)

= F â =
F

m/2
= 2a.

In particular, the force is unchanged, but the acceleration of the individual particles doubles. Finally
kd0

is a property of the material and should not change, so that

k̂d = kd0

√

ksm/2

ℓ0/2
= kd.

In summary, if the resolution of the discretization is doubled, the various parameters of the system
change as follows:

m̂ =
m

2
ℓ̂0 =

ℓ0

2
k̂s = ks k̂d = kd

ĉ = c λ̂ = 2λ ∆̂t =
∆t

2
F̂ = F â = 2a

1.2 Zero Length Spring

Simply setting ℓ0 = 0 in the simple spring model causes problems. However, when modeling
materials, this value is reached through the limit n → ∞, ℓ0 → 0, and m → 0.

Another potential situation where a zero-length spring might be used is to connect two objects.
One solution to this problem is to place the connection points an arbitrary distance ℓ0/2 inside
each object. Letting s be the amount the joint is separated, the distance between the ends of the
spring is x = ℓ0 + s, and its derivative is where v = x′ = s′. The spring force is

F = −ks

(

x

ℓ0

− 1

)

− kdv = −ks

(

ℓ0 + s

ℓ0

− 1

)

− kdv = −

ks

ℓ0

s − kdv.

The resulting system is then the same as before, except that it lacks the inhomogeneous term, and
is

(

s
v

)

′

=

(

0 1

−
ks

mℓ0
−

kd

m

)(

s
v

)

.

We can now choose ks and ℓ0, or we could just factor out the arbitrary parameter ℓ0 into the spring
coefficient with

k̂s =
ks

ℓ0

F = −k̂sx − kdv kd = kd0

√

mks.
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(a) Edge springs do not prevent
shear.

(b) Edge and shear springs do not
prevent bending.

(c) Bending springs between two
triangles.

Figure 2: Mass spring model for cloth.

1.3 2D Mass Spring System in 3D

Cloth may be modeled as a 2D surface that lives in 3D. The cloth surface might be discretized as
a Cartesian grid of masses and springs, with masses at the corners connected along the edges by
springs. The springs effectively restrict stretching and compression along the axes.

This cloth discretization lacks forces that are able to combat shear in the cloth. If a piece of
cloth were modeled as a single square, one could fold the cloth into a line that is twice the edge
length. Shearing the entire Cartesian grid of cloth has the same effect, illustrated in Figure 2(a).
One way of solving this problem is to add springs along the diagonals of the squares in the cloth
grid. One might choose to place springs on all of the left diagonals, all of the right diagonals, some
mixture of left and right diagonals, or both left and right diagonals. Shear forces are different from
stretching forces. Cloth tends to be very resistant to stretch but shears relatively easily, so shear
springs are typically much weaker than edge springs. An alternative approach would be to use
finite elements for the cloth, but for now we shall stick to springs.

This cloth model still has a major problem. This panel of cloth has no resistance to bending
along the lines of springs that run along the axial directions, as in Figure 2(b). This may be
fixed with additional springs that correct bending, such as the version obtained here by connecting
opposing vertices of adjacent triangles (the shear springs create triangles). Bending forces in cloth
are also typically very weak.

These bending springs have a couple potential limitations. If the desired angle between two
triangles is nonzero, the bending spring will be unable to apply a force that would tend to correct
the bend if the two triangles are coplanar or are bent in the wrong direction. Another issue with
this model is that bending forces become very weak when the triangles are nearly coplanar. These
two issues can be alleviated by connecting the shared edge between the triangles to the bending
spring with yet another spring. This configuration is shown in Figure 2(c).

This setup works well in practice but may fail to apply forces in the right direction for some
configurations of the cloth triangles. Note that the two triangles (formed by edge and shear springs)
along with the original bending spring form a tetrahedron. achieving the desired lengths of these
six springs is equivalent to achieving the desired shape for this tetrahedron. The tetrahedron
may become inverted from its desired shape or degenerate. The second bending spring applies
forces between a pair of opposing edges. In addition to this spring, there are two other edge-edge
connections possible as well as four point-face possibilities (altitude springs). Between these seven
possible springs locations, there will always be at least one choice (except in highly degenerate
collinear configurations) that is capable of applying a suitable restoring force to the tetrahedron.
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