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Lecture 5

1 Modeling 1D Materials

2 Springs

2.1 Simple Spring

One of the simplest forces one might imagine is the simple spring. A simple spring may be formu-
lated in 1D with one endpoint fixed to the origin and the other of mass m located at x. Let x0 be
the rest length of the spring and ks and kd be spring-specific constants. The force applied by the
spring is
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The constant ks is the spring constant, which has units of newtons N = kgms−2. In 1D, this is just
Young’s modulus, but in higher dimensions the two differ by a geometry term. The constant kd is
the damping coefficient and has units of kgs−1. Note that x/x0 − 1 is the strain on the spring and
F is its stress, so that the spring equation (ignoring the damping term) expresses a stress-strain
relationship.

We can write the spring as a first order system as
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The eigenvalues of this system are
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We can simplify analysis of the eigenvalues by rewriting them in terms of a dimensionless kd0
as
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The system is under-damped if kd0
< 2. If kd0

= 0 the system has no damping at all, and its
eigenvalues will be pure imaginary. The system is critically damped and has a repeated eigenvalues
when kd0

= 2, and the system is over-damped when kd0
> 2. As before, |λ|∆t ≈ 1.
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2.2 Elastic Materials

By connecting masses and springs, it is possible to simulate elastic materials. In 1D, an elastic
material is modeled by interconnecting a line of masses with springs. In 2D, an elastic material is
modeled by splitting it into triangles with masses at the vertices and springs along the edges. In
3D, the same can be done using tetrahedra with masses at the vertices and springs along the edges.
In the limit of infinite stiffness, these materials will behave as rigid bodies, and in the limit of no
stiffness, the particles move without interacting.

Many materials may be modeled quite effectively using only masses and springs. There are
other effective ways to model materials, such as the finite element method, which instead computes
forces between particles by considering the deformation and material properties of the volumetric
elements. Finite elements tend to require fewer elements, but they are also slower. The finite
element method has better determined elastic behavior and permits arbitrary constitutive models,
including fracture and plasticity. It is also more accurate, though accuracy has little meaning when
considering collisions and fracture. We will cover finite elements more later.
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