CS205b/CME306

Lecture 19

1 Viscosity

We now focus on the discretization of the viscosity term in the Navier-Stokes equations. Typically the inviscid equations are called the Euler equations while the viscous equations are called the Navier-Stokes equations.

For incompressible flow with nonzero viscosity we still have the same equation for conservation of mass. It is given by

$$
\rho_{t}+\mathbf{u} \cdot \nabla \rho=0 .
$$

However, the momentum equation (in $2 D$) becomes

$$
\left\{\begin{array}{l}
u_{t}+\mathbf{u} \cdot \nabla u+\frac{p_{x}}{\rho}=\frac{\left(2 \mu u_{x}\right)_{x}+\left(\mu\left(u_{y}+v_{x}\right)\right)_{y}}{\rho} \tag{1}\\
v_{t}+\mathbf{u} \cdot \nabla v+\frac{p_{y}}{\rho}=\frac{\left(\mu\left(u_{y}+v_{x}\right)\right)_{x}+\left(2 \mu v_{y}\right)_{y}}{\rho}-g
\end{array}\right.
$$

where we have added the viscosity terms to the RHS of the equation. In vector form, this is can be written as

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}+\frac{\nabla p}{\rho}=\mathbf{g}+\frac{(\nabla \cdot \boldsymbol{\tau})^{T}}{\rho}
$$

Now consider the special case where $\mu=$ constant in (1). In that case we can simplify the viscosity term on the RHS as follows.

$$
\begin{aligned}
\frac{\left(2 \mu u_{x}\right)_{x}+\left(\mu\left(u_{y}+v_{x}\right)\right)_{y}}{\rho} & =\frac{2 \mu u_{x x}+\mu u_{y y}+\mu v_{x y}}{\rho} \\
& =\frac{\mu\left(u_{y y}+u_{x x}\right)}{\rho}+\frac{\mu\left(u_{x x}+v_{x y}\right)}{\rho} \\
& =\frac{\mu\left(u_{y y}+u_{x x}\right)}{\rho}+\frac{\mu\left(u_{x}+v_{y}\right)_{x}}{\rho} \\
& =\frac{\mu\left(u_{y y}+u_{x x}\right)}{\rho}+0 \\
& =\frac{\mu}{\rho} \Delta u
\end{aligned}
$$

$$
\begin{aligned}
\frac{\left(\mu\left(u_{y}+v_{x}\right)\right)_{x}+\left(2 \mu v_{y}\right)_{y}}{\rho} & =\frac{\mu u_{y x}+\mu v_{x x}+2 \mu v_{y y}}{\rho} \\
& =\frac{\mu\left(v_{x x}+v_{y y}\right)}{\rho}+\frac{\mu\left(v_{y y}+u_{x y}\right)}{\rho} \\
& =\frac{\mu\left(v_{x x}+v_{y y}\right)}{\rho}+\frac{\mu\left(v_{y}+u_{x}\right)_{y}}{\rho} \\
& =\frac{\mu\left(v_{x x}+v_{y y}\right)}{\rho}+0 \\
& =\frac{\mu}{\rho} \Delta v
\end{aligned}
$$

Therefore for $\mu=$ constant, the equations (1) become

$$
\left\{\begin{array}{l}
u_{t}+\mathbf{u} \cdot \nabla u+\frac{p_{x}}{\rho}=\frac{\mu}{\rho} \Delta u \tag{2}\\
v_{t}+\mathbf{u} \cdot \nabla v+\frac{p_{y}}{\rho}=\frac{\mu}{\rho} \Delta v-g
\end{array}\right.
$$

1.1 Discretization

In the projection method for incompressible flow the viscosity term is included in the computation of \mathbf{u}^{\star}, the intermediate velocity field. That is, the steps in the projection method become

1. Compute the intermediate velocity field \mathbf{u}^{\star}

$$
\frac{\mathbf{u}^{\star}-\mathbf{u}^{n}}{\Delta t}+\mathbf{u}^{n} \cdot \nabla \mathbf{u}^{n}=\frac{(\nabla \cdot \boldsymbol{\tau})^{T}}{\rho}+\mathbf{g}
$$

2. Solve an elliptic equation for the pressure

$$
\Delta \hat{p}=\nabla \cdot \mathbf{u}^{\star}
$$

3. Compute the divergence free velocity field \mathbf{u}^{n+1}

$$
\mathbf{u}^{n+1}-\mathbf{u}^{\star}+\nabla \hat{p}=0
$$

where we have again assume that $\rho=$ constant, and set $\hat{p}=\frac{p \Delta t}{\rho}$.
Next we will discretize the viscous terms in (2). Since we are using a MAC grid and \mathbf{u}^{\star} is defined at the cell walls, we need the viscous term discretized at the cell walls. We approximate the Laplacian of u at the grid point $i+\frac{1}{2}, j$ as

$$
\left(\Delta u^{n}\right)_{i+\frac{1}{2}, j} \approx \frac{u_{i-\frac{1}{2}, j}^{n}-2 u_{i+\frac{1}{2}, j}^{n}+u_{i+\frac{3}{2}, j}^{n}}{\Delta x^{2}}+\frac{u_{i+\frac{1}{2}, j-1}^{n}-2 u_{i+\frac{1}{2}, j}^{n}+u_{i+\frac{1}{2}, j+1}^{n}}{\Delta y^{2}}
$$

This is a second order central difference approximation. The problem with this approximation is that it requires that $\Delta t \sim \Delta x^{2}$ for stability. This is a severe restriction on the time step and we would like to avoid it. One solution, due to Kim and Moin, is to treat the viscosity implicitly. So for step 1 in the projection method, we solve the equation

$$
\frac{\mathbf{u}^{\star}-\mathbf{u}^{n}}{\Delta t}+\mathbf{u}^{n} \cdot \nabla \mathbf{u}^{n}=\frac{\left(\nabla \cdot \boldsymbol{\tau}^{\star}\right)^{T}}{\rho}+\mathbf{g}
$$

The term $\mathbf{u}^{n} \cdot \nabla \mathbf{u}^{n}$ is still treated the same as before. Then the terms at time step n will be on the RHS, while the \star terms are on the LHS. In the case of constant μ, we get a decoupled linear system of the form

$$
\left\{\begin{array}{l}
A_{1} u=b_{1} \\
A_{2} v=b_{2}
\end{array}\right.
$$

Another possibility is to use trapezoidal rule

$$
\frac{\mathbf{u}^{\star}-\mathbf{u}^{n}}{\Delta t}+\mathbf{u}^{n} \cdot \nabla \mathbf{u}^{n}=\frac{\left(\nabla \cdot \boldsymbol{\tau}^{\star}\right)^{T}+\left(\nabla \cdot \boldsymbol{\tau}^{n}\right)^{T}}{2 \rho}+\mathbf{g}
$$

One problem in incompressible flow is that the numerical viscosity may be larger than the physical viscosity. We want the numerical viscosity arising from the discretization of the $\mathbf{u} \cdot \nabla \mathbf{u}$ term to be smaller than the physical viscosity $\frac{\nabla \cdot \boldsymbol{\tau}}{\rho}$.

Recall the first order upwind discretization of the advection equation

$$
u_{t}+u_{x}=0
$$

The discretization is

$$
\begin{aligned}
& u_{t}+\frac{u_{i}-u_{i-1}}{\Delta x}=0 . \\
\Rightarrow & u_{t}+\frac{u_{i}-\left(u_{i}-\Delta x\left(u_{x}\right)_{i}+\frac{\Delta x^{2}}{2}\left(u_{x x}\right)_{i}+O\left(\Delta x^{3}\right)\right)}{\Delta x}=0 \\
\Rightarrow & u_{t}+\left(u_{x}\right)_{i}-\frac{\Delta x}{2}\left(u_{x x}\right)_{i}=O\left(\Delta x^{2}\right) \\
\Rightarrow & u_{t}+\left(u_{x}\right)_{i}=\frac{\Delta x}{2}\left(u_{x x}\right)_{i}+O\left(\Delta x^{2}\right)
\end{aligned}
$$

Now suppose you want to solve

$$
u_{t}+u_{x}=\mu u_{x x} .
$$

From the above, we see that using a first order upwind discretization for u_{x} our modified equation will be

$$
u_{t}+u_{x}=\left(\mu+\frac{\Delta x}{2}\right) u_{x x} .
$$

μ is the real viscosity and $\frac{\Delta x}{2}$ is the numerical viscosity. One of the big problems with solving Navier-Stokes is that the numerical viscosity is often larger than the real viscosity.

2 Vorticity

Here we describe a method to counteract the numerical dissipation that damps out many interesting features in the flow.

Taking the curl of the momentum equation

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}+\frac{\nabla p}{\rho}=\mathbf{g}
$$

gives

$$
\boldsymbol{\Omega}_{t}+\mathbf{u} \cdot \nabla \boldsymbol{\Omega}-\boldsymbol{\Omega} \cdot \nabla \mathbf{u}-\frac{1}{\rho^{2}} \nabla p \times \nabla \rho=\nabla \times \mathbf{g}
$$

where

$$
\boldsymbol{\Omega}=\nabla \times \mathbf{u}
$$

In $2 D$,

$$
\boldsymbol{\Omega}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
u & v & 0
\end{array}\right|=\left(\begin{array}{c}
-\frac{\partial}{\partial z} v \\
\frac{\partial}{\partial z} u \\
\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u
\end{array}\right)
$$

Since

$$
\frac{\partial}{\partial z} u=\frac{\partial}{\partial z} v=0
$$

we have

$$
\boldsymbol{\Omega}=\left(\begin{array}{c}
0 \\
0 \\
v_{x}-u_{y}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\Omega
\end{array}\right)
$$

So this is particularly nice in $2 D$ as we get one scalar equation for Ω (in $3 D$ we still get a 3 -vector). Since Ω will be either positive or negative, the vorticity vector $\boldsymbol{\Omega}$ is pointing either into or out of the $x-y$ plane. Vorticity can be thought of as a paddle wheel which is trying to spin the flow. The direction of the spinning depends on the sign of Ω.

Some points of interest regarding vorticity are

- Vorticity is conserved.
- Vorticity stays confined in high Reynolds number flows.

Here we discuss a simple turbulence model due to Steinhoff. First we compute vorticity location vectors

$$
\mathbf{n}=\frac{\nabla\|\boldsymbol{\Omega}\|}{\|\nabla\| \boldsymbol{\Omega}\| \|}
$$

Then we compute the paddle wheel force as

$$
\mathbf{f}=\mathbf{n} \times \boldsymbol{\Omega} .
$$

Steinhoff's idea was to add a forcing term to the momentum equations

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}+\frac{\nabla p}{\rho}=\mathbf{g}+\epsilon \Delta x \mathbf{f}
$$

It is interesting to note that if you linearize the forcing term, it looks like $-\Delta \mathbf{u}$.

