CS205b/CME306

Lecture 18

The full Navier-Stokes equations are

$$
\begin{aligned}
\rho_{t}+\nabla \cdot(\rho \mathbf{u}) & =0 \\
(\rho \mathbf{u})_{t}+\nabla \cdot\left(\rho \mathbf{u u ^ { T }}+p \mathbf{I}\right) & =\nabla \cdot \boldsymbol{\tau}+\rho \mathbf{g} \\
E_{t}+\nabla \cdot((E+p) \mathbf{u}) & =\nabla \cdot(\boldsymbol{\tau} \mathbf{u})+\nabla \cdot(k \nabla T)
\end{aligned}
$$

where T is the temperature, k is the thermal conductivity, and

$$
\begin{aligned}
\boldsymbol{\tau} & =\left(\begin{array}{cc}
2 \mu u_{x}+\lambda\left(u_{x}+v_{y}\right) & \mu\left(u_{y}+v_{x}\right) \\
\mu\left(u_{y}+v_{x}\right) & 2 \mu v_{y}+\lambda\left(u_{x}+v_{y}\right)
\end{array}\right) \\
& =\mu\binom{\nabla u}{\nabla v}+\mu\binom{\nabla u}{\nabla v}^{T}+\lambda\left(u_{x}+v_{y}\right) \mathbf{I} \\
& =\mu\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)+\lambda(\nabla \cdot \mathbf{u}) \mathbf{I} .
\end{aligned}
$$

The parameter λ is often chosen to make the $\nabla \cdot \boldsymbol{\tau}=0$. The latter criterion is called Stokes Hypothesis and results in $\lambda=-\frac{2}{3} \mu$ in 3D and $\lambda=-\mu$ in 2D. The Navier-Stokes equations simplify under the incompressibility assumption to

$$
\begin{align*}
\nabla \cdot \mathbf{u} & =0 \\
\rho_{t}+\mathbf{u} \cdot \nabla \rho & =0 \\
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}+\frac{\nabla p}{\rho} & =\frac{\nabla \cdot \boldsymbol{\tau}}{\rho}+\mathbf{g} \\
e_{t}+\mathbf{u} \cdot \nabla e & =\frac{\operatorname{tr}(\boldsymbol{\tau} \nabla \mathbf{u})}{\rho}+\frac{\nabla \cdot(k \nabla T)}{\rho}-\mathbf{u} \cdot \mathbf{g} \tag{1}
\end{align*}
$$

where $\boldsymbol{\tau}$ simplifies to

$$
\boldsymbol{\tau}=\mu\left(\begin{array}{cc}
2 u_{x} & u_{y}+v_{x} \\
u_{y}+v_{x} & 2 v_{y}
\end{array}\right)=\mu\binom{\nabla u}{\nabla v}+\mu\binom{\nabla u}{\nabla v}^{T}=\mu\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right) .
$$

1 Heat Equation

By removing the viscosity and forcing terms from equation 1 one has

$$
\begin{equation*}
e_{t}+\mathbf{u} \cdot \nabla e=\frac{\nabla \cdot(k \nabla T)}{\rho} \tag{2}
\end{equation*}
$$

The assumptions that e and T satisfy the relationship

$$
d e=c_{v} d T
$$

simplifies equation 2 to

$$
c_{v} T_{t}+c_{v} \mathbf{u} \cdot \nabla T=\frac{\nabla \cdot(k \nabla T)}{\rho}
$$

which can be further simplified to the standard heat equation

$$
\begin{equation*}
T_{t}=\frac{1}{\rho c_{v}} \nabla \cdot(k \nabla T) \tag{3}
\end{equation*}
$$

by ignoring the effects of convection, i.e. setting $\mathbf{u}=0$. (Note that the assumption $\mathbf{u}=0$ will also eliminate the viscosity and forcing terms from the energy equation.) If k is constant, this can be written as

$$
T_{t}=\frac{k}{\rho c_{v}} \Delta T .
$$

Applying explicit Euler time discretization to equation 3 results in

$$
\frac{T^{n+1}-T^{n}}{\Delta t}=\frac{1}{\rho c_{v}} \nabla \cdot\left(k \nabla T^{n}\right)
$$

where either Dirichlet or Neumann boundary conditions can be applied on the boundaries of the computational domain. Assuming that ρ and c_{v} are constants allows us to rewrite this equation as

$$
\frac{T^{n+1}-T^{n}}{\Delta t}=\nabla \cdot\left(\hat{k} \nabla T^{n}\right)
$$

with $\hat{k}=\frac{k}{\rho c_{v}}$. Standard central differencing (second order accurate) can be used for the spatial derivatives as in

$$
\frac{\hat{k}_{i+\frac{1}{2}, j}\left(\frac{T_{i+1, j}-T_{i, j}}{\Delta x}\right)-\hat{k}_{i-\frac{1}{2}, j}\left(\frac{T_{i, j}-T_{i-1, j}}{\Delta x}\right)}{\Delta x}
$$

A time step restriction of

$$
\Delta t \hat{k}\left(\frac{2}{\Delta x^{2}}+\frac{2}{\Delta y^{2}}+\frac{2}{\Delta z^{2}}\right) \leq 1
$$

is needed for stability. If we $\Delta x=\Delta y$, then this is

$$
2 n \frac{\Delta t}{\Delta x^{2}} \hat{k} \leq 1
$$

where n is the dimension ($n=2$ in 2 D and $n=3$ in 3 D).
Implicit Euler time discretization

$$
\begin{equation*}
\frac{T^{n+1}-T^{n}}{\Delta t}=\nabla \cdot\left(\hat{k} \nabla T^{n+1}\right) \tag{4}
\end{equation*}
$$

avoids this time step stability restriction. This equation can be rewritten as

$$
\begin{equation*}
T^{n+1}-\Delta t \nabla \cdot\left(\hat{k} \nabla T^{n+1}\right)=T^{n} \tag{5}
\end{equation*}
$$

discretizing the $\nabla \cdot\left(\hat{k} \nabla T^{n+1}\right)$ term using central differencing. For each unknown, T_{i}^{n+1}, equation 5 is used to fill in one row of a matrix creating a linear system of equations. Since the resulting matrix is symmetric, a number of fast linear solvers can be used (e.g. a PCG method with an incomplete Choleski preconditioner, see Golub and Van Loan [1]). Equation 4 is first order accurate in time and second order accurate in space, and Δt needs to be chosen proportional to Δx^{2} in order to obtain an overall asymptotic accuracy of $O\left(\Delta x^{2}\right)$. However, the stability of the implicit Euler method allows one to chose Δt proportional to Δx saving dramatically on CPU time. The Crank-Nicolson scheme

$$
\frac{T^{n+1}-T^{n}}{\Delta t}=\frac{1}{2} \nabla \cdot\left(\hat{k} \nabla T^{n+1}\right)+\frac{1}{2} \nabla \cdot\left(\hat{k} \nabla T^{n}\right)
$$

can be used to achieve second order accuracy in both space and time with Δt proportional to Δx. For the Crank-Nicolson scheme,

$$
T^{n+1}-\frac{\Delta t}{2} \nabla \cdot\left(\hat{k} \nabla T^{n+1}\right)=T^{n}+\frac{\Delta t}{2} \nabla \cdot\left(\hat{k} \nabla T^{n}\right)
$$

is used to create a symmetric linear system of equations for the unknowns T_{i}^{n+1}. Again, all spatial derivatives are computed using standard central differencing.

Why not always use Crank-Nicholson, as it gives second order accuracy and no time step restriction? Let us look at the solution as $\Delta t \rightarrow \infty$. Backward Euler gives

$$
\Delta T^{n}=0
$$

which is the correct steady state solution. Crank-Nicholson gives

$$
\Delta T^{n+1}=-\Delta T^{n}
$$

In $1 D$ this is

$$
T_{x x}^{n+1}=-T_{x x}^{n}
$$

This shows that the curvature is changing sign at each time step. So the problem with CrankNicholson is that as Δt gets very large, you get oscillations, whereas with backward Euler, you get the steady-state solution.

References

[1] Golub, G. and Van Loan, C., Matrix Computations, The Johns Hopkins University Press, Baltimore, 1989.

