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Lecture 18

The full Navier-Stokes equations are

ρt + ∇ · (ρu) = 0

(ρu)t + ∇ · (ρuuT + pI) = ∇ · τ + ρg

Et + ∇ · ((E + p)u) = ∇ · (τu) + ∇ · (k∇T )

where T is the temperature, k is the thermal conductivity, and

τ =

(

2µux + λ(ux + vy) µ(uy + vx)
µ(uy + vx) 2µvy + λ(ux + vy)

)

= µ

(

∇u

∇v

)

+ µ

(

∇u

∇v

)T

+ λ(ux + vy)I

= µ(∇u + ∇uT ) + λ(∇ · u)I.

The parameter λ is often chosen to make the ∇ · τ = 0. The latter criterion is called Stokes
Hypothesis and results in λ = −2

3
µ in 3D and λ = −µ in 2D. The Navier-Stokes equations simplify

under the incompressibility assumption to

∇ · u = 0

ρt + u · ∇ρ = 0

ut + u · ∇u +
∇p

ρ
=

∇ · τ

ρ
+ g

et + u · ∇e =
tr(τ∇u)

ρ
+

∇ · (k∇T )

ρ
− u · g (1)

where τ simplifies to

τ = µ

(

2ux uy + vx

uy + vx 2vy

)

= µ

(

∇u

∇v

)

+ µ

(

∇u

∇v

)T

= µ(∇u + ∇uT ).

1 Heat Equation

By removing the viscosity and forcing terms from equation 1 one has

et + u · ∇e =
∇ · (k∇T )

ρ
. (2)
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The assumptions that e and T satisfy the relationship

de = cvdT

simplifies equation 2 to

cvTt + cvu · ∇T =
∇ · (k∇T )

ρ
,

which can be further simplified to the standard heat equation

Tt =
1

ρcv

∇ · (k∇T ) (3)

by ignoring the effects of convection, i.e. setting u = 0. (Note that the assumption u = 0 will also
eliminate the viscosity and forcing terms from the energy equation.) If k is constant, this can be
written as

Tt =
k

ρcv

∆T.

Applying explicit Euler time discretization to equation 3 results in

T n+1 − T n

∆t
=

1

ρcv

∇ · (k∇T n)

where either Dirichlet or Neumann boundary conditions can be applied on the boundaries of the
computational domain. Assuming that ρ and cv are constants allows us to rewrite this equation as

T n+1 − T n

∆t
= ∇ · (k̂∇T n)

with k̂ = k
ρcv

. Standard central differencing (second order accurate) can be used for the spatial
derivatives as in

k̂i+ 1

2
,j

(

Ti+1,j−Ti,j

∆x

)

− k̂i− 1

2
,j

(

Ti,j−Ti−1,j

∆x

)

∆x

A time step restriction of

∆tk̂

(

2

∆x2
+

2

∆y2
+

2

∆z2

)

≤ 1

is needed for stability. If we ∆x = ∆y, then this is

2n
∆t

∆x2
k̂ ≤ 1,

where n is the dimension (n = 2 in 2D and n = 3 in 3D).
Implicit Euler time discretization

T n+1 − T n

∆t
= ∇ · (k̂∇T n+1) (4)

avoids this time step stability restriction. This equation can be rewritten as

T n+1
− ∆t∇ · (k̂∇T n+1) = T n (5)
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discretizing the ∇· (k̂∇T n+1) term using central differencing. For each unknown, T n+1
i , equation 5

is used to fill in one row of a matrix creating a linear system of equations. Since the resulting matrix
is symmetric, a number of fast linear solvers can be used (e.g. a PCG method with an incomplete
Choleski preconditioner, see Golub and Van Loan [1]). Equation 4 is first order accurate in time and
second order accurate in space, and ∆t needs to be chosen proportional to ∆x2 in order to obtain
an overall asymptotic accuracy of O(∆x2). However, the stability of the implicit Euler method
allows one to chose ∆t proportional to ∆x saving dramatically on CPU time. The Crank-Nicolson
scheme

T n+1 − T n

∆t
=

1

2
∇ · (k̂∇T n+1) +

1

2
∇ · (k̂∇T n)

can be used to achieve second order accuracy in both space and time with ∆t proportional to ∆x.
For the Crank-Nicolson scheme,

T n+1
−

∆t

2
∇ · (k̂∇T n+1) = T n +

∆t

2
∇ · (k̂∇T n)

is used to create a symmetric linear system of equations for the unknowns T n+1
i . Again, all spatial

derivatives are computed using standard central differencing.
Why not always use Crank-Nicholson, as it gives second order accuracy and no time step

restriction? Let us look at the solution as ∆t → ∞. Backward Euler gives

∆T n = 0,

which is the correct steady state solution. Crank-Nicholson gives

∆T n+1 = −∆T n.

In 1D this is
T n+1

xx = −T n
xx

This shows that the curvature is changing sign at each time step. So the problem with Crank-
Nicholson is that as ∆t gets very large, you get oscillations, whereas with backward Euler, you get
the steady-state solution.
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