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Lecture 11

1 Discrete Conservation Form

Supplementary Reading: Osher and Fedkiw, §14.2, §14.3.2-4, §14.4-5; Leveque §4.1, §12.9-10

To ensure that shocks and other steep gradients are captured by our scheme (i.e. they move
at the right speed even if they are unresolved) we must write the equation in a discrete conserva-
tion form. That is, a form in which the rate of change of conserved quantities is equal to a difference
of fluxes. This form guarantees that we discretely conserve the total amount of the states of φ (e.g.
mass, momentum and energy) that are present, analogously with the integral form given by

d

dt

∫

Ω

φdV +

∫

∂Ω

f(φ) · dA =

∫

Ω

s(φ) dV.

More importantly, this can be shown to imply that steep gradients or jumps in the discrete profiles
propagate at the physically correct speeds.

Usually, conservation form is derived for control volume methods, that is, methods that evolve
cell average values in time rather than nodal values. In this approach, a grid node xi is assumed
to be the center of a grid cell (xi−1/2, xi+1/2), which is taken as the control volume. We integrate
the conservation law across this control volume to obtain

∫ xi+1/2

xi−1/2

φt + f(φ)x dx =
d

dt

∫ xi+1/2

xi−1/2

φdx + f(φi+1/2) − f(φi−1/2) = 0.

If we let φ̂i denote the total quantity of φ in the ith grid cell, i.e.

φ̂i =

∫ xi+1/2

xi−1/2

φdx

then we can write this as
(φ̂i)t + f(φi+1/2) − f(φi−1/2) = 0. (1)

We will refer to values computed at the xi as grid point or cell center values, and values computed
at the xi±1/2 as half grid point, cell wall, or flux values. We also define the cell average value of φ
in the grid cell i as

φi =
1

∆x
φ̂i =

1

∆x

∫ xi+1/2

xi−1/2

φdx.

Equation (1) has the desired conservation form in that the rate of change of the cell average is a
difference of fluxes. The difficulty with this formulation is that it requires transforming between cell
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averages of φ (which are directly evolved in time by the scheme) and cell wall values of φ (which must
be reconstructed) to evaluate the needed fluxes. We would like to avoid reconstructing pointwise
values of φ from the cell average values. The distinction between cell average and midpoint values
can be ignored for schemes whose accuracy is no higher than second order, since the cell average
and the midpoint value differ by only O(∆x2). This can be seen if we write φ in terms of its Taylor
series expansion about the point xi

φ(x) = φ(xi) + (x − xi)φ
′(xi) +

(x − xi)
2

2
φ′′(xi) + · · · .

Then,

φi =
1

(xi+1/2 − xi−1/2)

∫ xi+1/2

xi−1/2

φ(x) dx

=
1

∆x

∫ xi+1/2

xi−1/2

[

φ(xi) + (x − xi)φ
′(xi) +

(x − xi)
2

2
φ′′(xi) + · · ·

]

dx

=
1

∆x

[

φ(xi)∆x +
(x − xi)

2

2

∣

∣

∣

∣

xi+1/2

xi−1/2

φ′(xi) +
(x − xi)

3

6

∣

∣

∣

∣

xi+1/2

xi−1/2

φ′′(xi) + · · ·

]

= φ(xi) +
∆x2

24
φ′′(xi) + O(∆x4).

We also assume that we have a uniform grid, so that

xi+1/2 − xi−1/2 = ∆xi = ∆x.

For i ∈ {1, . . . ,m}, we have
(φ̂i)t + f(φi+1/2) − f(φi−1/2) = 0.

Summing over i, the fluxes cancel except for the ones on either side of the domain, so we get

m
∑

i=1

(φ̂i)t + f(φm+1/2) − f(φ1/2) = 0,

or, equivalently,
m
∑

i=1

(φi∆xi)t + f(φm+1/2) − f(φ1/2) = 0.

When using the weak form of the conservation law we evolve cell average values of φ in time,
but require pointwise values of φ at the half grid cells in order to evaluate the flux functions. As
noted above, if we only wanted a second order accurate scheme, we could simply approximate the
cell average value with the value of φ at the cell center. However, we would like to use the pointwise
values of φ while still getting better than second order accuracy. To achieve this, we replace the
physical flux function with a numerical flux function. We define the numerical flux function F

such that

f(φ)x =
F (x + ∆x/2) − F (x − ∆x/2)

∆x
(2)
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We call F the numerical flux since we require it in our numerical scheme, and also to distinguish
it from the closely related “physical flux”, f(φ). It is not obvious that the numerical flux function
exists, but from relationship (2) one can solve for its Taylor expansion to obtain

F = f(φ) −
∆x2

24
f(φ)xx +

7∆x4

5760
f(φ)xxxx − · · · .

In summary, we start with the conservation law

φt + f(φ)x = 0.

Integrating over a grid cell, we have

(φi∆x)t + f(φi+1/2) − f(φi−1/2) = 0.

Replacing φi with the pointwise value φi we make an O(∆x2) error

(φi∆x)t + f(φi+1/2) − f(φi−1/2) = O(∆x2).

Introducing the numerical flux function instead of the physical flux function eliminates the error

(φi)t +
F
(

xi+1/2

)

− F
(

xi−1/2

)

∆x
= 0.

This is the desired conservation form.

1.1 Constructing the Numerical Flux Function

We define the numerical flux function through the relation

f(φi)x =
F
(

xi+1/2

)

− F
(

xi−1/2

)

∆x
.

To obtain a convenient algorithm for computing this numerical flux function, we define h(x) im-
plicitly through the following equation

f(φ(x)) =
1

∆x

∫ x+∆x/2

x−∆x/2

h(y) dy

and note that taking a derivative on both sides of this equation yields

f(φ(x))x =
h(x + ∆x/2) − h(x − ∆x/2)

∆x

which shows that h is identical to the numerical flux function at the cell walls. That is Fi±1/2 =
h(xi±1/2) for all i. We calculate h by finding its primitive

H(x) =

∫ x

x
−1/2

h(y)dy
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using polynomial interpolation, and then take a derivative to get h. We build a divided difference
table to construct H.

zeroth order D0
i+1/2

H at cell walls

first order D1
i H at cell centers

second order D2
i+1/2

H at cell walls

third order D3
i H at cell centers

...
...

...

That is, the even divided differences of H are at the cell walls, and the odd
divided differences of H are at the cell centers. Since we are actually interested in determining h,
we do not need the zeroth order divided differences of H as they will drop out when we differentiate
to obtain h. Therefore, we can ignore the zeroth level of the divided difference table and construct
it starting at the first level. The first level is given by

D1
i H =

H
(

xi+1/2

)

− H
(

xi−1/2

)

∆x
= f(φi) = D0

i f.

This is because

H(xi+1/2) =

∫ xi+1/2

x
−1/2

h(y)dy

=

i
∑

j=0

(

∫ xj+1/2

xj−1/2

h(y)dy

)

= ∆x

i
∑

j=0

f(φ(xj)).

And similarly,

H(xi−1/2) = ∆x

i−1
∑

j=0

f(φ(xj)).

so that
H(xi+1/2) − H(xi−1/2) = ∆xf(φ(xi)).

The higher divided differences are

D2
i+1/2H =

f(φ(xi+1)) − f(φ(xi))

2∆x
=

1

2
D1

i+1/2f

D3
i H =

1

3
D2

i f

continuing in that manner.
According to the rules of polynomial interpolation, we can take any path along the divided

difference table to construct H, although they do not all give good results. ENO reconstruction
comprises two important features. First, choose D1

i H in the upwind direction. Second, choose
higher order divided differences by taking the smaller (in absolute value) of the possible choices.
Once we construct H(x), we evaluate H ′(xi+1/2) to get the numerical flux Fi+1/2.
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