
CS 205b / CME 306

Application Track

Homework 9

1. Let 〈u,v〉 and 〈u,v〉ρ denote the two inner products defined by

〈u,v〉 =

∫

Ω

u · v dV 〈u,v〉ρ =

∫

Ω

ρu · v dV,

where u · v denotes the standard pointwise dot product, and ρ is the density. The two new
inner products take two vector fields to produce a single scalar. The dot product is well-
defined for vectors of any dimension. You may assume for this assignment that all fields have
as many derivatives defined as desired. By regarding scalars as 1D vectors, the above inner
products can also be defined for scalar fields such as pressure. If u is the velocity, what is
1

2
〈u,u〉ρ?

It is the kinetic energy of the system.

2. Let G and D be the operators defined by

G : φ →
1

ρ
∇φ D : u →

1

ρ
∇ · u.

Show that the operators G and D are linear operators.

Let α and β be scalar constants.

G(αφ + βτ) =
1

ρ
∇(αφ + βτ)

= α

(

1

ρ
∇φ

)

+ β

(

1

ρ
∇τ

)

= αG(φ) + βG(τ)

D(αu + βv) =
1

ρ
∇ · (αu + βv)

= α

(

1

ρ
∇ · u

)

+ β

(

1

ρ
∇ · v

)

= αD(u) + βD(v)
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3. The linear operator B is said to be the transpose of the linear operator A with respect to an
inner product (·, ·) if for any vectors u and v, it is true that (Bu,v) = (u,Av). Show that
this definition of a transpose corresponds precisely to the definition of a matrix transpose
(even for non-square matrices) when the standard inner product is used: (u,v) = u

T
v.

(Bu,v) = (u,Av)

(Bu)T v = u
T
Av

u
T
B

T
v = u

T
Av

B
T = A

The last step is because the vectors u and v are arbitrary.

4. Show that the operator −D is the transpose of G with respect to the inner product 〈·, ·〉ρ
if and only if a particular boundary condition is satisfied, and find that boundary condition.
The boundary condition should not contain any volume integrals.

〈−Du, φ〉ρ = 〈u,Gφ〉ρ
∫

Ω

ρ(−Du)φdV =

∫

Ω

ρu · (Gφ) dV

∫

Ω

ρ

(

−
1

ρ
∇ · u

)

φdV =

∫

Ω

ρu ·

(

1

ρ
∇φ

)

dV

−

∫

Ω

(∇ · u)φdV =

∫

Ω

u · ∇φdV

0 =

∫

Ω

u · ∇φ + (∇ · u)φdV

=

∫

Ω

∇ · (φu) dV

=

∫

∂Ω

φu · dS

5. Show that both Direchlet and Neumann boundary conditions satisfy this boundary condition.
(Hint: write out the boundary condition obtained in the previous question with pressure and
velocity as the two arbitrary fields. Then, show that Direchlet and Neumann boundary each
suffice by considering what they mean for velocity and pressure.)

Written with velocity and pressure, the boundary condition is
∫

∂Ω

pu · dS.
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If Direchlet boundray conditions are assumed, then p = 0 at the boundary, and the integral

vanishes. For Neumann boundary conditions, u ·dS = u ·n dA = 0, so the integral vanishes.

6. A linear operator is said to be symmetric with respect to an inner product if it equals its
transpose with respect to that inner product. Show that DG is symmetric with respect to
〈·, ·〉ρ. You may assume for this and all subsequent problems that suitable boundary conditions
will be met.

Assuming the boundary condition is satisfied, −〈Du, φ〉ρ = 〈u,Gφ〉ρ.

〈DGτ, φ〉ρ = −〈Gτ,Gφ〉ρ
= −〈Gφ,Gτ 〉ρ
= 〈DGφ, τ 〉ρ
= 〈τ,DGφ〉ρ

7. Show that the operator L defined by

L : φ → ∇ ·

(

1

ρ
∇φ

)

is symmetric with respect to the inner product 〈·, ·〉.

Observe that ρDG = L.

〈DGτ, φ〉ρ = 〈τ,DGφ〉ρ
∫

Ω

ρ(DGτ)φdV =

∫

Ω

ρτ(DGφ) dV

∫

Ω

(ρDGτ)φdV =

∫

Ω

τ(ρDGφ) dV

∫

Ω

(Lτ)φdV =

∫

Ω

τ(Lφ) dV

〈Lτ, φ〉 = 〈τ,Lφ〉

A few rules of thumb might be taken from what has been shown above, even though you have
not considered discretizations.

• It was not an accident that the Poisson equation obtained in class was symmetric negative
semidefinite. In particular, when discretized, the gradient and divergence operators will
be matrices.
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• If suitable boundary conditions are not used, the Poisson operator will not be symmetric.

• Provided suitable boundary conditions are applied, there will be a preferred discretiza-
tion of divergence corresponding to any discretization of gradient which will result in
a symmetric negative definite system, and the two discretizations, written as matrices,
will be negative transposes of each other.

• Once you have chosen a discretization for gradient or divergence, the negative transpose
relationship can be used to derive the other discretization.

8. What are you doing for your final project? (This question is optional if you are not taking
the application track or receive project approval from the CA by email prior to the due date
of this assignment.) This question will be graded.

9. In 3D, there are three special spatial derivatives: gradient, curl, and divergence.

• Show that the curl of a gradient is identically zero.

Using Cartesian tensor notation, the curl can be expressed as eijkui,j.

∇×∇φ ⇒ eijkφ,ij

= eijkφ,ji

= −ejikφ,ji

= −eijkφ,ij

eijkφ,ij = 0

∇×∇φ = 0

• Show that the divergence of a curl is identically zero.

∇ · (∇× u) ⇒ (eijkui,j),k

= eijkui,jk

= eijkui,kj

= −eikjui,kj

= −eijkui,jk

eijkui,jk = 0

∇ · (∇× u) = 0
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• Assume that a vector field u can be decomposed as u = ∇φ +∇×w. Show that φ can
be obtained by solving Poisson’s equation.

u = ∇φ + ∇×w

∇ · u = ∇ · ∇φ + ∇ · (∇× w)

∇ · u = ∇ · ∇φ

∇2φ = ∇ · u

• This question is optional and will not be graded. Initialize a (2D) grid with random (2D)
vectors and decompose the perform the decomposition by solving the Poisson equation.
The divergence-free part should look rather like a fluid flow field. Also visualize the
curl-free part and the scalar field φ.
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