
CS 205b / CME 306

Application Track

Homework 3

1. Consider a 1D discretization with ∆x = 1
3 and the nine grid values ρ0 = 2, ρ1 = 5, ρ2 = 3,

ρ3 = 1, ρ4 = −2, ρ5 = −1, ρ6 = 0, ρ7 = 0, ρ8 = 0. Let the locations of these grid values be
x0 = 0, x1 = ∆x, x2 = 2∆x, etc.

(a) Construct the divided difference table for the data. Note that you will need to use ∆x

to construct this table. The first level of the table should consist of the ten values given
above, and there should be three additional levels above it. Thus, your table should
consist of 9 + 8 + 7 + 6 entries.

22.5 -4.5 22.5 -18 -4.5 4.5

-22.5 0 -4.5 18 0 -4.5 0

9 -6 -6 -9 3 3 0 0

2 5 3 1 -2 -1 0 0 0

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

(b) Assume information is flowing to the right (u > 0). For each of the positions x3, x4,
and x5, use third order HJ ENO to compute a Newton polynomial at that position. Call
these polynomials P r

3 (x), P r
4 (x), and P r

5 (x). You should leave your polynomials in the
form of a Newton polynomial.

For ρ3, follow the sequence LLR. This gives the polynomial

P r
3 (x) = 1 − 6

(

x −
3

3

)

− 4.5

(

x −
3

3

)(

x −
2

3

)(

x −
1

3

)

For ρ4, follow the sequence LLL. This gives the polynomial

P r
4 (x) = −2 − 9

(

x −
4

3

)

− 4.5

(

x −
4

3

)(

x −
3

3

)

− 4.5

(

x −
4

3

)(

x −
3

3

)(

x −
2

3

)

For ρ5, follow the sequence LRR. This gives the polynomial

P r
5 (x) = −1 + 3

(

x −
5

3

)

− 4.5

(

x −
5

3

)(

x −
4

3

)(

x −
6

3

)
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(c) These polynomials are constructed to be interpolating polynomials. Show that P r
4 (x) is

in fact an interpolating polynomial.

P r
4 (x) = −2 − 9

(

x −
4

3

)

− 4.5

(

x −
4

3

)(

x −
3

3

)

− 4.5

(

x −
4

3

)(

x −
3

3

)(

x −
2

3

)

P r
4 (x1) = −2 − 9

(

1

3
−

4

3

)

− 4.5

(

1

3
−

4

3

)(

1

3
−

3

3

)

− 4.5

(

1

3
−

4

3

)(

1

3
−

3

3

)(

1

3
−

2

3

)

= −2 + 9 − 3 + 1 = 5 = ρ1

P r
4 (x2) = −2 − 9

(

2

3
−

4

3

)

− 4.5

(

2

3
−

4

3

)(

2

3
−

3

3

)

− 4.5

(

2

3
−

4

3

)(

2

3
−

3

3

)(

2

3
−

2

3

)

= −2 + 6 − 1 + 0 = 3 = ρ2

P r
4 (x3) = −2 + 3 − 0 − 0 = 1 = ρ3

P r
4 (x4) = −2 − 9

(

4

3
−

4

3

)

− 4.5

(

4

3
−

4

3

)(

4

3
−

3

3

)

− 4.5

(

4

3
−

4

3

)(

4

3
−

3

3

)(

4

3
−

2

3

)

= −2 − 0 − 0 − 0 = −2 = ρ4

(d) Assume instead that information is flowing to the left (u < 0). Use third order HJ ENO
to compute the polynomials P l

3(x), P l
4(x), and P l

5(x). You should leave your polynomials
in the form of a Newton polynomial.

For ρ3, follow the sequence RLL. This gives the polynomial

P l
3(x) = 1 − 9

(

x −
3

3

)

− 4.5

(

x −
3

3

)(

x −
4

3

)

− 4.5

(

x −
3

3

)(

x −
4

3

)(

x −
2

3

)

For ρ4, follow the sequence RRR. This gives the polynomial

P l
4(x) = −2 + 3

(

x −
4

3

)

− 4.5

(

x −
4

3

)(

x −
5

3

)(

x −
6

3

)

For ρ5, follow the sequence RLR. This gives the polynomial

P l
5(x) = −1 + 3

(

x −
5

3

)

− 4.5

(

x −
5

3

)(

x −
6

3

)(

x −
4

3

)

(e) Above you computed six Newton polynomials. They should all look distinct, but they
are not all distinct polynomials. Which polynomials are actually equal and why? You
should not expand out the polynomals to answer this question.

Since the polynomials interpolate the data, they will the equal if they interpolate the same

data. Thus, P r
3 (x) = P r

4 (x) = P l
3(x) and P r

5 (x) = P l
4(x) = P l

5(x). Since P r
3 (0) = 8 and

P l
4(0) = 14, these two sets of polynomials are distinct.
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2. There are multiple second order Runge Kutta schemes that one might use to evolve x′ = f(x).
The classical one (and the one I am referring to when I write RK2) is xn+1/2 = xn+ 1

2∆tf(xn),

xn+1 = xn +∆tf(xn+1/2). Another second order Runge Kutta method is is TVD RK2, which
has the form x̂n+1 = xn + ∆tf(xn), xn+2 = x̂n+1 + ∆tf(x̂n+1), xn+1 = 1

2 (xn + xn+2).

(a) Show that these two schemes are in fact distinct schemes.

Let f(x) = x2, ∆t = 1, xn = 1. Then, RK2 gives xn+1/2 = 3
2 and xn+1 = 13

4 . From

TVD RK2 we get x̂n+1 = 2, xn+2 = 6, xn+1 = 4. Since the two schemes give different

results, they must be different.

(b) In homework 2, question 3b, you expressed the update rule for a time integration scheme
applied to x′ = λx (complex λ) in the form xn+1 = Cxn, where C is a complex number
that depends only only the value of λ∆t. Compute the expression for C for both of these
schemes. Let C2 be the one you computed for RK2.

In this case, f(x) = λx. RK2 gives

xn+1/2 = xn +
1

2
∆tλxn

xn+1 = xn + ∆tλ(xn +
1

2
∆tλxn)

= xn + ∆tλxn +
1

2
(∆tλ)2xn

C2 = C = 1 + ∆tλ +
1

2
(∆tλ)2

and TVD RK2 gives

x̂n+1 = xn + ∆tλxn

xn+2 = (xn + ∆tλxn) + ∆tλ(xn + ∆tλxn)

= xn + 2∆tλxn + (∆tλxn)2xn

xn+1 =
1

2
(xn + xn + 2∆tλxn + (∆tλxn)2xn)

= xn + ∆tλxn +
1

2
(∆tλxn)2xn

C = 1 + ∆tλ +
1

2
(∆tλ)2

(c) Use this to argue that the two schemes have identical stability plots. You do not need
to construct the stability plots.

The stability of any particular region was determined based on the truth of |C| < 1. Since

these schemes agree on C everywhere, their stability plots will agree everywhere.
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(d) Let C1 be the expression for C that is obtained for forward Euler, C3 the expression
obtained for TVD RK3, and C4 the value obtained for RK4. It is okay to read off C1

from the answer key to the assignment where you computed this, but you will need to
derive C3 and C4.

As before, C1 = 1 + ∆tλ. For TVD RK3,

x̂n+1 = xn + ∆tλxn

xn+2 = x̂n+1 + ∆tλx̂n+1

= xn + ∆tλxn + ∆tλ(xn + ∆tλxn)

= xn + 2∆tλxn + (∆tλ)2xn

xn+1/2 =
3

4
xn +

1

4
xn+2

=
3

4
xn +

1

4
(xn + 2∆tλxn + (∆tλ)2xn)

= xn +
1

2
∆tλxn +

1

4
(∆tλ)2xn

xn+3/2 = xn+1/2 + ∆tλxn+1/2

= (xn +
1

2
∆tλxn +

1

4
(∆tλ)2xn) + ∆tλ(xn +

1

2
∆tλxn +

1

4
(∆tλ)2xn)

= xn +
3

2
∆tλxn +

3

4
(∆tλ)2xn +

1

4
(∆tλ)3xn

xn+1 =
1

3
xn +

2

3
xn+3/2

xn+1 =
1

3
xn +

2

3
(xn +

3

2
∆tλxn +

3

4
(∆tλ)2xn +

1

4
(∆tλ)3xn)

xn+1 = xn + ∆tλxn +
1

2
(∆tλ)2xn +

1

6
(∆tλ)3xn

C3 = 1 + ∆tλ +
1

2
(∆tλ)2 +

1

6
(∆tλ)3
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Finally, for RK4 we get

k1 = λxn

k2 = λ(xn +
1

2
∆tλxn)

= λxn +
1

2
∆tλ2xn

k3 = λ(xn +
1

2
∆t(λxn +

1

2
∆tλ2xn))

= λxn +
1

2
∆tλ2xn +

1

4
∆t2λ3xn

k4 = λ(xn + ∆t(λxn +
1

2
∆tλ2xn +

1

4
∆t2λ3xn))

= λxn + ∆tλ(λxn +
1

2
∆tλ2xn +

1

4
∆t2λ3xn)

= λxn + ∆tλ2xn +
1

2
∆t2λ3xn +

1

4
∆t3λ4xn

xn+1 = xn +
1

6
∆t(k1 + 2k2 + 2k3 + k4)

xn+1 = xn + ∆tλxn +
1

2
(∆tλ)2xn +

1

6
(∆tλ)3xn +

1

24
(∆tλ)4xn

C4 = 1 + ∆tλ +
1

2
(∆tλ)2 +

1

6
(∆tλ)3 +

1

24
(∆tλ)4

(e) We could continue in this way using an explicit n-order scheme to derive Cn. What is
C∞ and why?

The solution the the differential equation is x = eλt. If xn = eλt then xn+1 = eλ(t+∆t) =
eλ∆teλt = eλ∆txn, so that

C∞ = eλ∆t = 1 + ∆tλ +
1

2
(∆tλ)2 +

1

6
(∆tλ)3 +

1

24
(∆tλ)4 + · · · .

(f) What does the stability region for C∞ look like? You should work out the stability
region analytically. You do not need to generate a stability plot for it.

Let λ = a + bi. |C∞| = |eλ∆t| = |e(a+bi)∆t| = |ea∆t||eb∆ti| = ea∆t. |C∞| < 1 and ∆t > 0
implies a < 0. Thus, the stability region is the region where Re(λ) < 0, or the entire left

half-plane.
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