
CS 205b / CME 306

Application Track

Homework 2

1. ALE An Eulerian formulation of conservation of mass uses control volumes that are fixed in
space as material flows freely through the control volumes. A Lagrangian formulations uses
control volumes that move with the material, so that material never flows into our out of the
control volume. An ALE (Arbitrary Lagrangian Eulerian) formulation is somewhere between
these two. Control volumes move around with a velocity v, as material flows freely through
them. The material has density ρ and velocity u. The velocity field v of the observer and the
velocity field u of the material being observed are independent and may vary in both space
and time. In particular, control volumes can move around and change shape over time.

(a) Adapt the derivation of the weak form for conservation of mass to the ALE case, where
the control volume itself also moves around based on a velocity field v.

The amount of mass in a control volume Ω is the same as in the Eulerian case:

mass =

∫

Ω

ρ dV.

As before, any change in this mass is due to material leaving and entering the control
volume. Let n be the outward-facing (unit) normal of a small patch of the boundary ∂Ω.
The motion of the fluid with respect to the control volume is u− v, so n · (u− v) is the
rate of movement of fluid across the boundary of the control volume at any point (with
positive indicating movement out of the volume). If the surface patch has area A, then
the rate of mass flow across the boundary patch is A(n · (u−v))ρ = ρ(u−v) · dS, where
dS is the surface element. This leads to the statement of mass conservation

∂

∂t

∫

Ω

ρ dV = −

∫

∂Ω

ρ(u − v) · dS.

(b) Show that in the special case that v = 0, the weak form derived for the Eulerian case is
recovered.

With v = 0, we get
∂

∂t

∫

Ω

ρ dV = −

∫

∂Ω

ρu · dS,

which is what was obtained in the Eulerian case.
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(c) Show what equation is obtained in the special case that v = u. Give a physical expla-
nation for why this equation corresponds to a Lagrangian formulation of conservation of
mass in weak form.

If v = u, then the ALE weak form simplifies to

∂

∂t

∫

Ω

ρ dV = 0,

which can be integrated to
∫

Ω

ρ dV = constant.

This just states that the mass in a control volume does not change (is a constant). Since
the control volume moves with the mass in the Lagrangian formulation, the amount of
mass in the control volume does not change, which is consistent with the equation.

(d) Convert the ALE weak form of conservation of mass into strong form. Be careful when
moving the time derivative inside the integration. Show that this matches what was
obtained using the Eulerian formulation.

0 =
∂

∂t

∫

Ω

ρ dV +

∫

∂Ω

ρ(u − v) · dS

=

(
∫

Ω

∂ρ

∂t
dV +

∫

∂Ω

ρv · dS

)

+

(
∫

∂Ω

ρu · dS −

∫

∂Ω

ρv · dS

)

=

∫

Ω

∂ρ

∂t
dV +

∫

∂Ω

ρu · dS

=

∫

Ω

∂ρ

∂t
dV +

∫

Ω

∇ · (ρu) dV

=

∫

Ω

∂ρ

∂t
+ ∇ · (ρu) dV

0 = ρt + ∇ · (ρu)

2. Duhamel’s Principle Consider the two ordinary differential equations x′ = λx and y′ =
λy + γ, where x, y, λ, and γ are all complex numbers.

(a) Find analytic solutions to the recurrences rn+1 = αrn and sn+1 = αsn + β. Be careful
of special cases.

The first recurrence is readily apparent, rn = αnr0. In the case of s, make the substitution
sn = un + κ. Then we have un+1 + κ = α(un + κ) + β. or un+1 = αun + (ακ + β − κ).

2



If α 6= 1, we can choose κ = β
1−α

, resulting in un+1 = αun. The solution to this
is un = αnu0. Then, sn − κ = αn(s0 − κ), so that we have the analytic solution
sn = αn(s0 −

β
1−α

) + β
1−α

. If α = 1, then the recurrence is sn+1 = sn + β, from which
the solution is just sn = s0 + nβ.

(b) For which α and β is rn bounded but sn unbounded?

If α 6= 1, both sequences are bounded precisely when αn is bounded. When α = 1, rn = rn

is bounded, but sn = s0 +nβ is bounded only if β = 0. Thus, the requested situation only
occurs when α = 1 and β 6= 0.

(c) For which α and β is sn bounded but rn unbounded?

This situation never occurs.

(d) Show that for trapezoid rule, the update rule for xn has the same form as the recurrence
rn, and the update rule for yn has the same form as recurrence sn. Also show that the
expressions for α are the same and do not depend on γ.

Trapezoid rule for xn and yn give

xn+1 = xn +
∆t

2
(λxn + λxn+1)

(

1 −
∆t

2
λ

)

xn+1 =

(

1 +
∆t

2
λ

)

xn

xn+1 =

(

1 + ∆t
2

λ

1 − ∆t
2

λ

)

xn

yn+1 = yn +
∆t

2
((λyn + γ) + (λyn+1 + γ))

(

1 −
∆t

2
λ

)

yn+1 =

(

1 +
∆t

2
λ

)

yn + ∆tγ

yn+1 =

(

1 + ∆t
2

λ

1 − ∆t
2

λ

)

yn + ∆tγ

The two recurrences have the desired form, with

α =
1 + ∆t

2
λ

1 − ∆t
2

λ
β = ∆tγ,

which satisfies what was to be shown.

(e) What do you conclude about the dependence of the stability of trapezoid rule on the
inhomogeneous term γ? Would the conclusion change much if backward Euler or forward
Euler were being studied instead?
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The stability only depends on γ when α = 1, which in the case of trapezoid rule only
occurs if ∆tλ = 0. ∆t = 0 is pointless and also results in β = 0, so stability differs only
if lambda = 0. The stability of trapezoid rule does not depend on the inhomogeneous
term as long as the homogeneous term is nonzero. Considering the different values of
α that would have been obtained for forward and backward Euler, the same conclusion
would be obtained for those as well.

3. Plotting Stability Note this problem contains a small programming component. The
lecture notes show stability plots for forward Euler (FE), backward Euler (BE), trapezoid
rule (TR), second order Runge-Kutta (RK2), third order Runge-Kutta (RK3), and fourth
order Runge-Kutta (RK4). These plots were obtained by considering the equation y′ = λy,
where λ is complex.

(a) State the update rules for FE, BE, TR, and RK2 when applied to y′ = f(y).

yn+1 = yn + ∆tf(yn) forward Euler

yn+1 = yn + ∆tf(yn+1) backward Euler

yn+1 = yn +
∆t

2
(f(yn) + f(yn+1)) trapezoid rule

yn+1 = yn + ∆tf(yn +
1

2
∆tf(yn)) second order Runge-Kutta

(b) Let f(y) = λy, so that the differential equation is y′ = λy. When solved for yn+1 in
terms of yn, the update rule should have the form yn+1 = Cyn, where C is a complex
number that depends only on λ∆t. Find C for FE, BE, TR, and RK2.

We already have effectively done this for trapezoid rule, and the process is similar for
the others.

C = 1 + ∆tλ forward Euler

C =
1

1 − ∆tλ
backward Euler

C =
1 + 1

2
∆tλ

1 − 1
2
∆tλ

trapezoid rule

C = 1 + ∆tλ +
1

2
(∆tλ)2 second order Runge-Kutta

(c) What must be true of C for a method to be stable for a given choice of ∆t and λ?

We should have |C| < 1.
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(d) Let ∆t = 1 and sample the complex plain in the region −3 ≤ Re(λ) ≤ 3 and −3 ≤
Im(λ) ≤ 3, determining for each value of λ whether the scheme will be stable. Use white
to indicate unstable and a distinct color (not black) to indicate stable. Add black axes
to the images (two lines is fine), making sure that the axes are on top of everything else.
It is recommended that you use matlab or octave for this assignment, though a solution
using C++ and ImageMagick is also acceptable. For each of FE, BE, TR, and RK2, you
should submit (on paper) the image obtained and the source code used to construct it
(even if the four programs are nearly identical). The images should closely match the
ones in the lecture notes.

Forward Euler

# Generate a grid of complex numbers L in the desired range

[x y] = meshgrid(-3:1/64:3);

L = x - y * I;

# Compute the value C (forward Euler)

C = 1 + L;

# white (1) = unstable (|C| >= 1), gray (1/2) = stable (|C| < 1)

M = 1-(abs(C) < 1)/2;

# Add black axes

N = max(0,M - (real(L)==0) - (real(I*L)==0));

# Display image

imshow(N);

Backward Euler

# Generate a grid of complex numbers L in the desired range

[x y] = meshgrid(-3:1/64:3);

L = x - y * I;

# Compute the value C (backward Euler)

C = 1 ./ (1 - L);

# white (1) = unstable (|C| >= 1), gray (1/2) = stable (|C| < 1)

M = 1-(abs(C) < 1)/2;

# Add black axes

N = max(0,M - (real(L)==0) - (real(I*L)==0));

# Display image

imshow(N);
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Trapezoid Rule

# Generate a grid of complex numbers L in the desired range

[x y] = meshgrid(-3:1/64:3);

L = x - y * I;

# Compute the value C (trapezoid rule)

C = (1 + L/2) ./ (1 - L/2);

# white (1) = unstable (|C| >= 1), gray (1/2) = stable (|C| < 1)

M = 1-(abs(C) < 1)/2;

# Add black axes

N = max(0,M - (real(L)==0) - (real(I*L)==0));

# Display image

imshow(N);

Second Order Runge-Kutta

# Generate a grid of complex numbers L in the desired range

[x y] = meshgrid(-3:1/64:3);

L = x - y * I;

# Compute the value C (second order Runge-Kutta)

C = 1 + L + L.*L/2;

# white (1) = unstable (|C| >= 1), gray (1/2) = stable (|C| < 1)

M = 1-(abs(C) < 1)/2;

# Add black axes

N = max(0,M - (real(L)==0) - (real(I*L)==0));

# Display image

imshow(N);
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(a) Forward Euler (b) Backward Euler

(c) Trapezoid Rule (d) Second Order Runge-Kutta

Figure 1: Output of octave scripts.
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