CS 205b / CME 306

Application Track

Homework 1

1. Use conservation of mass to show that the sum of the outward-facing area-weighted normals of a triangle mesh must be the zero vector.

Let $\rho>0$ and $\mathbf{u} \neq \mathbf{0}$ be a constant-density and constant-velocity fluid surrounding and flowing through this triangle mesh. The weak form of conservation of mass is

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{\Omega} \rho d V & =-\int_{\partial \Omega}(\rho \mathbf{u}) \cdot d S \\
\frac{\partial}{\partial t} \int_{\Omega} d V & =-\int_{\partial \Omega} \mathbf{u} \cdot d S \\
0 & =-\mathbf{u} \cdot \int_{\partial \Omega} d S \\
0 & =-\mathbf{u} \cdot \sum_{k} \int_{T_{k}} d S \\
0 & =-\mathbf{u} \cdot \sum_{k} \mathbf{n}_{k}
\end{aligned}
$$

where T_{k} are the triangles, and \mathbf{n}_{k} is the area-weighted, outward-facing normal of T_{k}. Since \mathbf{u} is arbitrary, it follows that

$$
\sum_{k} \mathbf{n}_{k}=\mathbf{0} .
$$

2. The strong form conservation of mass in an Eulerian frame can be written as $\rho_{t}+\rho_{x} u+\rho u_{x}=0$. For each of the three terms:
(a) Provide a physical description of what the term means,

The ρ_{t} term describes how the density of a fixed point in space changes with time. The $u \rho_{x}$ term describes how mass advects (moves around) with the velocity field. The ρu_{x} term describes how mass compresses and expands in the velocity field.
(b) Describe a physical situation in which that term is identically zero in a region while the other two terms remain nonzero, and

If $\rho_{t}=0$, then ρ is constant in time. Further, u and ρ must be spatially varying so that the second and third terms do not vanish. This would occur, for example, when air is forced through a nozzle and is in steady state.
If $u \rho_{x}=0$, then either $u=0$ or ρ_{x}. If $u=0$ over a region of space, then $u_{x}=0$, which makes the third term vanish as well. Thus, $\rho_{x}=0$, and the density profile is spatially constant and time varying (to prevent the first term from vanishing). This situation would occur, for example, when a tire is being (slowly) filled with air.
If $\rho u_{x}=0$, then $u_{x}=0$, which implies that the velocity is spatially constant. That is, the fluid is simply advecting through space. Since ρ_{x} is nonzer, the density profile is spatially varying. This would occur, for example, if water whose sality is increasing over time flows at constant velocity through a pipe. Water becomes less dense as its sality increases, so $\rho_{t}<0$.
(c) Show that the situation can actually occur by finding ρ and u such that the term is identically zero in the region $x, t \in[0,1]$ while the other two terms are nonzero throughout the entire region.

The profile $\rho=x+1, u=\frac{1}{x+1}$ makes only the first term vanish. The profile $\rho=t+1$ and $u=-\frac{x+1}{t+1}$ makes only the second term vanish. The profile $\rho=x-t+2$ and $u=1$ makes only the third term vanish.
3. In this sequence of problems, we will construct a kernel function $W(\mathbf{x}, h)$ for use in the SPH method in $1 \mathrm{D}, 2 \mathrm{D}$, and 3 D .
(a) Since we would like $W(\mathbf{x}, h)$ to be symmetric about the origin, we take $W(\mathbf{x}, h)=$ $c_{d}(h) f(\|x\| / h)$, where $c_{d}(h)$ is a normalization factor that depends on the dimension d and the radius of influence $h>0$. The function $f(r)$ need not be defined for $r<0$. Find $c_{1}(h), c_{2}(h)$, and $c_{3}(h)$. (Hint: Use polar coordinates in 2D and spherical coordinates in 3D.)

For 1D, we have

$$
\begin{aligned}
1 & =\int_{\mathbb{R}} W(\mathbf{x}, h) \\
& =2 \int_{0}^{\infty} c_{1}(h) f\left(\frac{r}{h}\right) d r \\
& =2 c_{1}(h) \int_{0}^{\infty} f\left(\frac{r}{h}\right) d r \\
& =2 c_{1}(h) \int_{0}^{\infty} f(u) h d u \\
c_{1}(h) & =\left(2 h \int_{0}^{\infty} f(r) d r\right)^{-1}
\end{aligned}
$$

For 2D, we have

$$
\begin{aligned}
1 & =\int_{\mathbb{R}^{2}} W(\mathbf{x}, h) \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} r c_{2}(h) f\left(\frac{r}{h}\right) d r d \theta \\
& =c_{2}(h) \int_{0}^{2 \pi} d \theta \int_{0}^{\infty} r f\left(\frac{r}{h}\right) d r \\
& =2 \pi c_{2}(h) \int_{0}^{\infty} r f\left(\frac{r}{h}\right) d r \\
& =2 \pi c_{2}(h) \int_{0}^{\infty} h u f(u) h d u \\
c_{2}(h) & =\left(2 \pi h^{2} \int_{0}^{\infty} r f(r) d r\right)^{-1}
\end{aligned}
$$

For 3D, we have

$$
\begin{aligned}
1 & =\int_{\mathbb{R}^{3}} W(\mathbf{x}, h) \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} r^{2} \sin \phi c_{3}(h) f\left(\frac{r}{h}\right) d r d \phi d \theta \\
& =c_{3}(h) \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{\infty} r^{2} f\left(\frac{r}{h}\right) d r \\
& =4 \pi c_{3}(h) \int_{0}^{\infty} r^{2} f\left(\frac{r}{h}\right) d r \\
& =2 \pi c_{3}(h) \int_{0}^{\infty}(h u)^{2} f(u) h d u \\
c_{3}(h) & =\left(4 \pi h^{3} \int_{0}^{\infty} r^{2} f(r) d r\right)^{-1}
\end{aligned}
$$

(b) We would like the radius of influence of the kernel $W(\mathbf{x}, h)$ to be h. What conditions does this place on $f(r)$?

For any \mathbf{x} where $\|\mathbf{x}\|>h$, we have $W(\mathbf{x}, h)=c_{d}(h) f(\|x\| / h)=0$, which means $f(r)=0$ if $r>1$. For any \mathbf{x} where $\|\mathbf{x}\|<h$, we have $W(\mathbf{x}, h)=c_{d}(h) f(\|x\| / h)>0$, which means $f(r)>0$ if $0 \leq r<1$. One may also take this to mean $f(1)=0$ as well, and this will follow from the continuity requirement if one does not.
(c) We further require that $W(\mathbf{x}, h)$ have continuous second derivatives everywhere. What conditions does the continuity requirement place on $f(r)$? Be sure the kernel also satisfies this continuity requirement at the origin. (Hint: it is sufficient to look at 1D with $h=1$.)

This certainly requires $f(r)$ to have a continuous second derivative everywhere. $W(x, 1)=$ $c_{d}(1) f(|x|)$. Since $c_{d}(1)$ is a constant, it will not affect discontinuity and can be ignored.

Since $f(r)$ is already assumed to have continuous second derivatives $f(|x|)$ also will except possibly at $x=0$.

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{d}{d x} f(|x|)=\lim _{x \rightarrow 0^{+}} \frac{d}{d x} f(x)=f^{\prime}(0) \\
\lim _{x \rightarrow 0^{-}} \frac{d}{d x} f(|x|)=\lim _{x \rightarrow 0^{+}} \frac{d}{d x} f(-x)=-f^{\prime}(0)
\end{gathered}
$$

Since $-f^{\prime}(0)=f^{\prime}(0)$, we need $f^{\prime}(0)=0$. (If this is not done, the kernel will come to a sharp "point" at the origin.)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{d^{2}}{d^{2} x} f(|x|) & =\lim _{x \rightarrow 0^{+}} \frac{d^{2}}{d^{2} x} f(x)=f^{\prime \prime}(0) \\
\lim _{x \rightarrow 0^{-}} \frac{d^{2}}{d^{2} x} f(|x|) & =\lim _{x \rightarrow 0^{-}} \frac{d^{2}}{d^{2} x} f(-x)=f^{\prime \prime}(0)
\end{aligned}
$$

The second derivatives are already continuous.
(d) Find a suitable piecewise cubic function $f(r)$ defined for $r \geq 0$ that satisfies all of these requirements.

Since $f(r)$ has continuous second derivatives at $r=1$, and $f(r)$ is identically zero for $r>1$, it follows that $f(1)=f^{\prime}(1)=f^{\prime \prime}(1)=0$. Along with $f^{\prime}(0)=0$, this is four constraints. If a single cubic were used for $0 \leq r<1$, then it must be that cubic is 0 , which is not suitable. Thus, we will need to use (at least) two cubics to cover this region. The location of the transition between the two must be between 0 or 1 , but it is otherwise somewhat arbitrary. We will choose $\frac{1}{2}$.

$$
f(r)=\left\{\begin{array}{cl}
a_{3} r^{3}+a_{2} r^{2}+a_{1} r+a_{0} & 0 \leq r<\frac{1}{2} \\
b_{3} r^{3}+b_{2} r^{2}+b_{1} r+b_{0} & \frac{1}{2}<r<1 \\
0 & r \geq 1
\end{array}\right.
$$

The constraints $f(1)=f^{\prime}(1)=f^{\prime \prime}(1)=0$ and $f^{\prime}(0)=0$ simplify this to

$$
f(r)=\left\{\begin{array}{cl}
a_{3} r^{3}+a_{2} r^{2}+a_{0} & 0 \leq r<\frac{1}{2} \\
b_{3}(1-r)^{3} & \frac{1}{2}<r<1 \\
0 & r \geq 1
\end{array}\right.
$$

Continuity of $f\left(\frac{1}{2}\right), f^{\prime}\left(\frac{1}{2}\right)$, and $f^{\prime \prime}\left(\frac{1}{2}\right)$ yield the constraints $\frac{1}{8} a_{3}+\frac{1}{4} a_{2}+a_{0}=\frac{1}{8} b_{3}$, $\frac{3}{4} a_{3}+a_{2}=-\frac{3}{4} b_{3}$, and $3 a_{3}+2 a_{2}=3 b_{3}$. Solving these gives

$$
f(r)=\left\{\begin{array}{cl}
6 a_{0} r^{3}-6 a_{0} r^{2}+a_{0} & 0 \leq r<\frac{1}{2} \\
2 a_{0}(r-1)^{3} & \frac{1}{2}<r<1 \\
0 & r \geq 1
\end{array}\right.
$$

Since we must normalize this function anyway, choose $a_{0}=0$.

$$
f(r)=\left\{\begin{array}{cl}
6 r^{3}-6 r^{2}+1 & 0 \leq r<\frac{1}{2} \\
2(1-r)^{3} & \frac{1}{2}<r<1 \\
0 & r \geq 1
\end{array}\right.
$$

(e) Evaluate $c_{1}(h), c_{2}(h)$, and $c_{3}(h)$.

$$
\begin{aligned}
\int_{0}^{\infty} f(r) d r & =\int_{0}^{\frac{1}{2}} 6 r^{3}-6 r^{2}+1 d r+\int_{\frac{1}{2}}^{1} 2(1-r)^{3} d r \\
& =\left[\frac{3}{2} r^{4}-2 r^{3}+r\right]_{0}^{\frac{1}{2}}+\left[-\frac{1}{2}(1-r)^{4}\right]_{\frac{1}{2}}^{1} \\
& =\frac{3}{32}-\frac{1}{4}+\frac{1}{2}+\frac{1}{32}=\frac{3}{8} \\
c_{1}(h) & =\frac{4}{3 h} \\
\int_{0}^{\infty} r f(r) d r & =\int_{0}^{\frac{1}{2}} 6 r^{4}-6 r^{3}+r d r+\int_{\frac{1}{2}}^{1} 2 r(1-r)^{3} d r \\
& =\int_{0}^{\frac{1}{2}} 6 r^{4}-6 r^{3}+r d r+\int_{0}^{\frac{1}{2}} 2(1-r) r^{3} d r \\
& =\int_{0}^{\frac{1}{2}} 4 r^{4}-4 r^{3}+r d r \\
& \left.=\frac{4}{5} r^{5}-r^{4}+\frac{1}{2} r^{2}\right]_{0}^{\frac{1}{2}}-\frac{1}{16}+\frac{1}{8}=\frac{7}{80} \\
c_{2}(h) & =\frac{40}{7 \pi h^{2}} \\
& =\int_{0}^{\frac{1}{2}} 6 r^{5}-6 r^{4}+r^{2} d r+\int_{0}^{\frac{1}{2}} 2(1-r)^{2} r^{3} d r \\
& =\int_{0}^{\frac{1}{2}} 8 r^{5}-10 r^{4}+2 r^{3}+r^{2} d r \\
& =\left[\frac{4}{3} r^{6}-2 r^{5}+\frac{1}{2} r^{4}+\frac{1}{3} r^{3}\right]_{0}^{\frac{1}{2}} \\
& =\frac{1}{48}-\frac{1}{16}+\frac{1}{32}+\frac{1}{24}=\frac{1}{32} \\
\int_{0}^{\infty} r^{2} f(r) d r & =\frac{8}{\pi h^{3}} \\
c_{3}(h) & =6 r^{4}+r^{2} d r+\int_{\frac{1}{2}}^{1} 2 r^{2}(1-r)^{3} d r \\
& =\int_{0}^{\frac{1}{2}}(1)
\end{aligned}
$$

