
Scalable Web Programming

CS193S - Jan Jannink - 1/12/10

Administrative Stuff

• Computer Forum Career Fair: Wed. 13, 11AM-4PM

• (Just in case you hadn’t seen the tent go up)

• Any problems with MySQL setup?

• Review: web coding is complex, power law has ramifications everywhere

• Feedback: time to step on the gas

• Office space: Gates B28

• Website: http://cs193s.stanford.edu

http://cs193s.stanford.edu
http://cs193s.stanford.edu

Weekly Syllabus

1.Scalability: (Jan.)

2.Agile Practices

3.Ecology/Mashups*

4.Browser/Client

5.Data/Server: (Feb.)

6.Security/Privacy

7.Analytics*

8.Cloud/Map-Reduce

9.Publish APIs: (Mar.)*

10. Future

* assignment due

Programming Project #1

• Adapt GWT sample application

• Turn existing functionality into an integration test

• Display random 20 digit number in a creative way, e.g.

• use external captcha code

• generate funny image from number

• Add several unit tests to validate new code

• Link to a test result display from main page

Sample Mockup

Tests Project Scope

Assignment Motivation

• Grading confined to code & test correctness and test coverage

• Project creativity aids team grouping for larger projects

• Best pages become candidates for demo to angel investor group

• Demo meeting & lunch will take place in March

• all participants invited to attend

• 3-6 demos will be presented

• open discussion with investors follows

Team Formation

• Goal: mirror realistic environment

• Team structure:

• 1-2 leaders based on creativity of first assignment

• 2-4 contributors who can work in teams

• 2-4 consultants who will work on individual projects

• No grade competition:

• creativity competition for demos

Agile Testing

• Unit tests

• simple demonstrations of code behavior

• Integration tests

• show composite behavior of code

• Regression testing

• essentially application of above tests

• Performance testing

Tests

• Form a living institutional memory of the software

• Communicate developers’ intentions and actual accomplishments

• Facilitate greater distribution of coding tasks

• Simplify surgical replacement of code at any level of embedding

• Document APIs and dynamic behaviors

• Maintain code performance over time

IBM Example

• DB2 relational database first SQL database

• Oracle quickly overtook it in prominence commercially

• During my stint in IBM (‘96-97)

• DB engine core had been frozen for years

• R&D engineers were needed to modify large parts of codebase

• Thousands of test cases for the system

• lack of internal tests turned the query engine into a black box

Back to Software

• So many layers, so little time

• Data flow is the starting point

• Identify flow control areas

• Define APIs there

• Use test harnesses to iterate development

• build back to DB, simulate horizontal scaling

• Start continuous integration

Client
Logic

Server
Logic

Website Data Path

Browser

Cache

Web Servers

DB

Flow
Control
Points

Website Design Principle

• Flesh out the system front end to back end

• figure out what people want to see

• mock up the look, then data links, flesh them out

• Design the data flow back to front

• use browser view to minimize data satisfying queries

• keep the schema as simple as possible

Test Design Principles

• Least effort simulation

• Often results in simpler program logic as well

• Produces leaner faster test suites

• Save corner cases for after program logic development

• Avoid guessing what will be important

• Document bug fixes with a new test or test parameters

A Panacea?

• Testing can be overkill in some applications

• UI can change extremely fast

• overhead of test changes can be prohibitive

• customers can end up testers (perpetual beta)

• Small, well understood and encapsulated code

• making code private is a performance guarantee

• often integration tested by the code that uses it

Cost Benefit Analysis

• Always exhaustively test published APIs

• distributing sample code teaches use of APIs

• Test based on frequency of code reuse

• Test based on code volatility

• Skip tests only when code verification is enforced

• either through end user testing, external test suites

Perpetual Beta

• User testing OK

• does it chase away users?

• Benefits outweigh drawbacks?

• Case study: Cuil

• you are your first impression

• Case study: Gmail

• GB’s of storage

Testing in Practice

• Canned data access via a text file

• Output a simple DB query to text file and use it for a test harness

• Simulate memcached with a hash table

• Use test framework to memorialize DB schema

• Even use test suite to populate new DB instances

• Server virtualization enables scale out testing

Continuous Integration

• Concept: tests run automatically at every checkin

• Highly effective when combined with development using git

• Enforces simple test development

• Serves as another developer communication tool

• Ant: XML definition of development, test, production builds

• not 100% trivial to write first scripts

• Cruise Control: well documented, very configurable

Minimal Releasable Code

• Define your customer

• self, team, die hard fans, casual user

• enterprise vs. consumer

• Make sure the value outweighs the pain

• Make sure the upgrade process outweighs the pain

• Divide, Conquer, Release, Iterate

Lessons Learned

• Tests can be extraordinarily valuable

• the longer your code lasts the more valuable it becomes

• favors group productivity over individual productivity

• Improved communication is the unexpected benefit

• speeds up integration of new engineers

• Like everything it is amenable to cost benefit analysis

• Continuous integration further speeds development cycle

Scale Out Ideas

• Server virtualization

• use when not single resource bound

• Automatic server allocation

• demands simple server setup

• Database replication and partitioning

• simple key based partitioning is most feasible

• avoid data loss and increase performance

Worth Checking Out

• Junit

• http://ww.junit.org/

• The Tipping Point, Malcolm Gladwell

• Ant

• http://ant.apache.org/

• Cruise Control

• http://cruisecontrol.sourceforge.net//

http://www.powersof10.com
http://www.powersof10.com
http://www.powersof10.com
http://www.powersof10.com
http://www.powersof10.com
http://www.powersof10.com

Q & A Topics

• Assignment #1

• Project team definition

• Top Down vs. Bottom Up

• hybrid approach

• 80-20 rule for test development

• maximize coverage at minimum effort

• Startup development vs. Steady State maintenance

