
Stanford CS193p
Fall 2011

Developing Applications for iOS
Fall 2011

Stanford CS193p

Stanford CS193p
Fall 2011

Today
UI Element of the Week
UIToolbar

iPad
Split View
Popover
Universal (iPhone + iPad) Application
Demo

Friday Section
AVFoundation framework - Capturing and manipulating images.

Stanford CS193p
Fall 2011

Collection of UIBarButtonItems
Just drag a UIToolbar out into your view (usually at the top or bottom of it).
Then drag UIBarButtonItems into the toolbar and wire up outlets/actions to/from them.
Has a default “steel” UI, but can be customized using bar style, background image, et. al.

UIToolbar

Custom toolbar with
a background image
which is a .png of a

yellow square.

Standard
toolbar UI.

Stanford CS193p
Fall 2011

UINavigationController’s Toolbar
One also appears at the bottom of a UINavigationController if its toolbarHidden @property = NO
 (then you set each UIViewController’s toolbarItems @property to control which buttons
 (toolbarItems is an NSArray of UIBarButtonItems)
Default value of toolbarHidden is YES.

UIToolbar

Navigation
Controller

Toolbar

Switch to turn on
Toolbar in Navigation
Controller in Xcode

PsychologistViewController’s
toolbarItems array contains a
UIBarButtonSystemItemCamera.

Stanford CS193p
Fall 2011

UINavigationController’s Toolbar
One also appears at the bottom of a UINavigationController if its toolbarHidden @property = NO
 (then you set each UIViewController’s toolbarItems @property to control which buttons
 (toolbarItems is an NSArray of UIBarButtonItems)
Default value of toolbarHidden is YES.

UIToolbar

Navigation
Controller

Toolbar

Switch to turn on
Toolbar in Navigation
Controller in Xcode

PsychologistViewController’s
toolbarItems array contains a
UIBarButtonSystemItemCamera.

Click Here

Stanford CS193p
Fall 2011

UINavigationController’s Toolbar
One also appears at the bottom of a UINavigationController if its toolbarHidden @property = NO
 (then you set each UIViewController’s toolbarItems @property to control which buttons
 (toolbarItems is an NSArray of UIBarButtonItems)
Default value of toolbarHidden is YES.

UIToolbar

Switch to turn on
Toolbar in Navigation
Controller in Xcode

HappinessViewController’s
toolbarItems array contains a

Bordered button with the title “Hello”.

Stanford CS193p
Fall 2011

UINavigationController’s Toolbar
One also appears at the bottom of a UINavigationController if its toolbarHidden @property = NO
 (then you set each UIViewController’s toolbarItems @property to control which buttons
 (toolbarItems is an NSArray of UIBarButtonItems)
Default value of toolbarHidden is YES.

UIToolbar

Switch to turn on
Toolbar in Navigation
Controller in Xcode

HappinessViewController’s
toolbarItems array contains a

Bordered button with the title “Hello”.

Click Back

Stanford CS193p
Fall 2011

UINavigationController’s Toolbar
One also appears at the bottom of a UINavigationController if its toolbarHidden @property = NO
 (then you set each UIViewController’s toolbarItems @property to control which buttons
 (toolbarItems is an NSArray of UIBarButtonItems)
Default value of toolbarHidden is YES.

UIToolbar

Switch to turn on
Toolbar in Navigation
Controller in Xcode

Camera is back.

Stanford CS193p
Fall 2011

UIBarButtonItem
Usually dragged out in Xcode, but can be created with various alloc/init methods.
Target/Action like UIButton
Bordered or Plain
Title or Image (or Custom View) or use Built-in System Items:
Fixed and Flexible Space Items

UIToolbar

Using Flexible Space to Right Align

Using Flexible Space to
Center an Item with other

buttons left and right

Centering with Flexible Spaces

All these buttons are
System Items except Item

in the middle.

Plain Style

Bordered Style

Stanford CS193p
Fall 2011

UISplitViewController

Stanford CS193p
Fall 2011

UISplitViewController
Just drag one out into an iPad Storyboard (only)
If you don’t see a Split View Controller in the Object Library, your storyboard is not iPad-style.
You select which style of storyboard you have when you first create it (via New File ... menu item).

Split view is a base UI element only
It only makes sense for the Split View to be the initial view controller of your application.
You would (probably) never embed one in another view controller.
You would only ever have one split view controller in your application.

Setting/Getting the two view controllers
Both view controllers are almost always set with ctrl-drag in Xcode.
@property (nonatomic, copy) NSArray *viewControllers; // 0 is left (master), 1 is right (detail)
It doesn’t really make sense for this array to have anything but 2 UIViewControllers in it.
Note that this is not a readonly @property.
But also note that it forces you to set/get the both at the same time.
It is copy so that you don’t pass a mutable array and then try to modify it afterwards.

Stanford CS193p
Fall 2011

UISplitViewController
Setting the Split View’s delegate @property
You must do this. Otherwise, the left side will be inaccessible in portrait mode.
You usually do this in UIViewController method viewDidLoad (we’ll talk about this method later).
Either the master or the detail view controller may be the delegate depending on the situation.
Three different options for how to deal with rotation ...

The delegate controls the split view’s visual appearance
@property (nonatomic, assign) id <UISplitViewControllerDelegate> delegate;
The right side is always visible in a split view (we call it the “detail” view of the split view).
The split view’s delegate is asked about when the left side (the “master”) should be on screen.
When the left side is not on screen, you are responsible for displaying a UIBarButtonItem to show it
 (you will be provided with a UIBarButtonItem to use in as an argument to the delegate method).

Notice assign pointer type. Should probably be weak. assign means weak without auto-zeroing.
This means you can get a dangling pointer (though, in practice, this is unlikely in this case).

Stanford CS193p
Fall 2011

Always hide left side behind a bar button
- (BOOL)splitViewController:(UISplitViewController *)sender
 shouldHideViewController:(UIViewController *)master
 inOrientation:(UIInterfaceOrientation)orientation
{
 return YES; // always hide it
}

UISplitViewController

Stanford CS193p
Fall 2011

Never hide left side behind a bar button
- (BOOL)splitViewController:(UISplitViewController *)sender
 shouldHideViewController:(UIViewController *)master
 inOrientation:(UIInterfaceOrientation)orientation
{
 return NO; // never hide it
}

UISplitViewController

Stanford CS193p
Fall 2011

Hide it in portrait orientation only
- (BOOL)splitViewController:(UISplitViewController *)sender
 shouldHideViewController:(UIViewController *)master
 inOrientation:(UIInterfaceOrientation)orientation
{
 return UIInterfaceOrientationIsPortrait(orientation);
}

UISplitViewController

Stanford CS193p
Fall 2011

UISplitViewController
If you forget to set the delegate, you’ll get this ...

No button to bring up the
left side in a popover!

Stanford CS193p
Fall 2011

UISplitViewControllerDelegate
Handling the bar button item ...
This gets called in your delegate when the master gets hidden.
- (void)splitViewController:(UISplitViewController *)sender
 willHideViewController:(UIViewController *)master
 withBarButtonItem:(UIBarButtonItem *)barButtonItem
 forPopoverController:(UIPopoverController *)popover
{
 barButtonItem.title = @“Master”; // use a better word than “Master”!
 // setSplitViewBarButtonItem: must put the bar button somewhere on screen
 // probably in a UIToolbar or a UINavigationBar
 [detailViewController setSplitViewBarButtonItem:barButtonItem];
}

See? You are being provided
the bar button item.

You just need to put it on
screen somewhere.

You have to implement this.

Stanford CS193p
Fall 2011

UISplitViewControllerDelegate
When it is time for the bar button to go away ...
- (void)splitViewController:(UISplitViewController *)sender
 willShowViewController:(UIViewController *)master
 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem
{
 // removeSplitViewBarButtonItem: must remove the bar button from its toolbar
 [detailViewController removeSplitViewBarButtonItem:nil];
}

Stanford CS193p
Fall 2011

UISplitViewControllerDelegate
Typical “setSplitViewBarButton:” method
Example of using a UIToolbar to show the bar button item.
This both adds and removes because it stores the old bar button in a property
 (so setSplitViewBarButtonItem:nil removes the existing one).
- (void)setSplitViewBarButtonItem:(UIBarButtonItem *)barButtonItem
{
 UIToolbar *toolbar = [self toolbar]; // might be outlet or calculated
 NSMutableArray *toolbarItems = [toolbar.items mutableCopy];
 if (_splitViewBarButtonItem) [toolbarItems removeObject:_splitViewBarButtonItem];
 // put the bar button on the left of our existing toolbar
 if (barButtonItem) [toolbarItems insertObject:barButtonItem atIndex:0];
 toolbar.items = toolbarItems;
 _splitViewBarButtonItem = barButtonItem;
}

Stanford CS193p
Fall 2011

UISplitViewController
So how does the detail get updated when master changes?
Target/Action or Segue

Target/Action
Example (code in the master view controller):
- (IBAction)doit
{
 id detailViewController = [[self.splitViewController viewControllers] lastObject];
 [detailViewController setSomeProperty:...];
}

Segue for split view entirely replaces the detail view controller
Remember, segues always instantiate a view controller (split view stops strongly pointing to old one).
Can Replace either side, but much more common to replace the right side (since it’s the “detail”).
Be careful! You might Replace the toolbar that you put the split view bar button into!
Need to be sure to put it back into the newly instantiated view controller before it goes on screen.

Stanford CS193p
Fall 2011

UISplitViewController
(Somewhat) general bar button replacement on Replace segue
Implement delegate in the master: call setSplitViewBarButtonItem: in detail from delegate methods.
Then transfer the bar button in prepareForSegue:sender: (along with updating the new detail VC).
- (id)splitViewDetailWithBarButtonItem
{
 id detail = [self.splitViewController.viewControllers lastObject];
 if ([detail respondsToSelector:@selector(setSplitViewBarButtonItem:)] &&
 [detail respondsToSelector:@selector(splitViewBarButtonItem)]) {
 }
 return nil;
}
- (void)transferSplitViewBarButtonItemToViewController:(id)destinationViewController
{
 UIBarButtonItem *splitViewBarButtonItem = [[self splitViewDetailWithBarButtonItem] splitViewBarButtonItem];
 [[self splitViewDetailWithBarButtonItem] setSplitViewBarButtonItem:nil];
 if (splitViewBarButtonItem) [destinationViewController setSplitViewBarButtonItem:splitViewBarButtonItem];
}
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if ([segue.identifier isEqualToString:@"MyReplaceSegue"]) {
 [self transferSplitViewBarButtonItemToViewController:segue.destinationViewController];
 [segue.destinationViewController setSomeProperty:self.dataToTransferToDetail];
 }
}

Stanford CS193p
Fall 2011

Popover
Not a UIViewController, but displays one inside a rectangle
@property (nonatomic, strong) UIViewController *contentViewController;
Also you can animate the changing of a popover that’s already on screen with:
- (void)setContentViewController:(UIViewController *)vc animated:(BOOL)animated;

Usually the above property is ctrl-dragged in Xcode
This creates a Popover segue.
In your prepareForSegue:sender: method, the arg will be isKindOf:UIStoryboardPopoverSegue.
The UIStoryboardPopoverSegue has a - (UIPopoverController *)popoverController @property.

You can alloc/initWithContentViewController: one too
Not very common, but not a bad thing.
Segues are nicer because segues are essentially “documentation” of your UI in storyboards.

Visible?
You can tell whether a popover is currently visible with - (BOOL)popoverVisible;

Stanford CS193p
Fall 2011

Popover
But you can also present a popover from code
Popover has a little arrow that points to what (rectangle or button) brought it up.
- (void)presentPopoverFromRect:(CGRect)aRect or
 inView:(UIView *)view
 permittedArrowDirections:(UIPopoverArrowDirection)direction
 animated:(BOOL)flag;
or
- (void)presentPopoverFromBarButtonItem:(UIBarButtonItem *)barButtonItem
 permittedArrowDirections:(UIPopoverArrowDirection)direction
 animated:(BOOL)flag;

Don’t forget to keep a strong pointer to the popover controller!
- (IBAction)presentPopover {
 UIPopoverController *pop = [[UIPopoverController alloc] initWithViewController:vc];
 [pop presentPopoverFromBarButtonItem:item permittedArrowDirections:...];
} // BAD! no strong pointer to the popover controller! presenting it is not enough!

Stanford CS193p
Fall 2011

Popover
Dismissing a popover automatically
Dismissed automatically if the user clicks outside of the popover.
Unless the user clicks in one of the views set by this UIPopoverController property:
@property (nonatomic, copy) NSArray *passthroughViews;

Dismissing a popover from your code
- (void)dismissPopoverAnimated:(BOOL)animated;
You would call this when some interaction inside your popover’s view controller results in dismissal.
For example, the user presses “OK” or otherwise chooses something.
Usually the object that put the popover up (the one that segued to it) dismisses it.
How? Delegation. The view controller inside the popover sends a delegate method when it’s done.
So very often view controllers inside a popover have a settable delegate method in their API.

Popover has delegate which gets notified on dismissal
- (void)popoverControllerDidDismissPopover:(UIPopoverController *)sender;
Only sent if the user dismisses the popover by clicking elsewhere (not programmatic dismissals).

Stanford CS193p
Fall 2011

Popover
Size
Three ways for a popover’s size to be determined ...

Setting the size in Xcode
Inspect a view controller.
Now whenever this view controller appears in a popover, it’ll be that size.

Set contentSizeForViewInPopover in the content VC controller
@property (nonatomic) CGSize contentSizeForViewInPopover;
Or you could override it to calculate the size on the fly.

Set the size by sending a message to the popover controller
- (void)setPopoverContentSize:(CGSize)size animated:(BOOL)animated;
This last one is pretty non-object-oriented.
Presumably a view controller is more likely to know it’s “natural size” than some other object.

Stanford CS193p
Fall 2011

Universal Applications
A “Universal” application that will run on iPhone or iPad
Single binary image.

How to create one
In an existing iOS 5 iPhone project, select the project in the Navigator (on the left in Xcode)
Change the Devices pull down under the Summary tab to be Universal.
Then, lower down in that window, choose the storyboard for each platform.
An iPad storyboard must be created as an iPad storyboard from the start (no conversion).

Stanford CS193p
Fall 2011

Universal Applications
How do I figure out “am I on an iPad?”
BOOL iPad = (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad);
This is not a first-resort. You might well want to use other conditionals before using this.
E.g., checking self.splitViewController in your Controller to see if you’re in a split view.
We’ll see some examples of “other things to check” on the next slide.

Stanford CS193p
Fall 2011

Universal Applications
Code conditional on whether you’re on screen
Because there is room for more view controllers to be on screen at the same time on the iPad.
E.g. left and right split view versus views that appear one at a time via navigation controller.
A simple way to do that is to check a UIView’s window property. If nil, then it’s off screen.
For example, this code snippet might appear in a UIViewController somewhere ...
if (self.view.window) ...

How big is the current screen?
CGRect screenBounds = [[UIScreen mainScreen] bounds]; // in points
Probably wouldn’t want to check an exact size here, but maybe a threshold?

What is the resolution of the view I’m drawing in?
Use UIView’s @property (CGFloat) contentScaleFactor.

Stanford CS193p
Fall 2011

Demo
iPad Psychologist
Two storyboards: one for iPhone/iPod Touch, one for iPad.
Share the MVC code (but different segues and layout in the two storyboards).
UISplitViewController

Watch for ...
A little bit more examples of struts and springs at the start (before we do iPad work).
How we create a new storyboard and update our project settings to use both storyboards.
Two different ways to update the right-hand side of a split view (target/action and Replace segue).
How to control when split view hides the left-hand side of a split view behind a bar button.

Stanford CS193p
Fall 2011

Coming Up
Homework
You know everything you need to know now to do assignment 3!

Next Lecture
View Controller Lifecycle
Scroll View, Image View, Web View
Perhaps Tab Bar Controller, etc.

Friday
AVFoundation framework - Capturing and manipulating images.

