
Stanford CS193p
Developing Applications for iPhone 4, iPod Touch, & iPad

Fall 2010

Stanford
CS193p

Fall 2010

Today
Objective-C
Methods (Class and Instance)
Instance Variables
Properties
Dynamic Binding
Introspection
nil and BOOL

Foundation Framework (time permitting)
NSObject, NSString, NSMutableString
NSNumber, NSValue, NSData, NSDate
NSArray, NSDictionary, NSSet
Enumeration
Property Lists

Stanford
CS193p

Fall 2010

Method Syntax

Stanford
CS193p

Fall 2010

- (NSArray *)shipsAtPoint:(CGPoint)bombLocation withDamage:(BOOL)damaged;

Dash for instance method.
Plus for class method.

Will explain difference in a moment.

Method Syntax

Stanford
CS193p

Fall 2010

- (NSArray *)shipsAtPoint:(CGPoint)bombLocation withDamage:(BOOL)damaged;

Return type in parentheses

Method Syntax

Stanford
CS193p

Fall 2010

- (NSArray *)shipsAtPoint:(CGPoint)bombLocation withDamage:(BOOL)damaged;

First part of method name.
Full name is shipsAtPoint:withDamage:

Second part of method name.

Method Syntax

Stanford
CS193p

Fall 2010

- (NSArray *)shipsAtPoint:(CGPoint)bombLocation withDamage:(BOOL)damaged;

Type of first argument in parentheses.
This one happens to be a C struct.

Type of second argument in parentheses.
This one is a BOOL (boolean value).

Method Syntax

Stanford
CS193p

Fall 2010

- (NSArray *)shipsAtPoint:(CGPoint)bombLocation withDamage:(BOOL)damaged;

Name of first argument.
Use it like a local variable inside method definition.

Name of second argument.

Method Syntax

Stanford
CS193p

Fall 2010

- (NSArray *)shipsAtPoint:(CGPoint)bombLocation withDamage:(BOOL)damaged;

- (void)splitViewController:(UISplitViewController*)svc
 willHideViewController:(UIViewController *)aViewController
 withBarButtonItem:(UIBarButtonItem *)barButtonItem
 forPopoverController:(UIPopoverController *)popoverController;

Line up colons when there are lots of arguments (or argument names are long).

- (IBAction)digitPressed:(UIButton *)sender;
- (IBAction)digitPressed:(id)sender;
- (IBAction)digitPressed:sender; // same as (id)sender version
- (IBAction)digitPressed;

Use IBAction (same as void) to alert Interface Builder of an action.

Instance Methods
Starts with a dash
- (IBAction)digitPressed:(UIButton *)sender;

“Normal” methods you are used to
Can access instance variables inside as if they were locals
Can send messages to self and super inside
Both dispatch the message to the calling object, but use different implementations
If a superclass of yours calls a method on self, it will your implementation (if one exists)

Example calling syntax:
BOOL destroyed = [ship dropBomb:bombType at:dropPoint from:height];

Stanford
CS193p

Fall 2010

Class Methods
Starts with a plus. Used for allocation, singletons, utilities
+ (id)alloc; // makes space for an object of the receiver’s class (always pair w/init)
+ (id)motherShip; // returns the one and only, shared (singleton) mother ship instance
+ (int)turretsOnShipOfSize:(int)shipSize; // informational utility method

Can not access instance variables inside
Messages to self and super mean something a little different
Both invoke only other class methods. Inheritance does work.

Example calling syntax (a little different from instance methods)
CalculatorBrain *brain = [[CalculatorBrain alloc] init];
Ship *theMotherShip = [Ship motherShip];
Ship *newShip = [Ship shipWithTurrentCount:5];
int turretsOnMediumSizedShip = [Ship turretsOnShipOfSize:4]; Stanford

CS193p
Fall 2010

Instance Variables
Scope
By default, instance variables are @protected (only the class and subclasses can access).
Can be marked @private (only the class can access) or @public (anyone can access).

Scope syntax
@interface MyObject : NSObject
{
 int foo;
@private
 int eye;
@protected
 int bar;
@public
 int forum;
 int apology;
@private
 int jet;
} Stanford

CS193p
Fall 2010

Protected: foo & bar
Private: eye & jet
Public: forum & apology

Properties
Forget everything on the previous slide!
Mark all of your instance variables @private.
Use @property and “dot notation” to access instance variables.

Create methods to set/get an instance variable’s value
@interface MyObject : NSObject
{
@private
 int eye;
}
- (int)eye;
- (void)setEye:(int)anInt;
@end

Now anyone can access your instance variable using “dot notation”
Stanford
CS193p

Fall 2010

someObject.eye = newEyeValue; // set the instance variable
int eyeValue = someObject.eye; // get the instance variable’s current value

Properties
Forget everything on the previous slide!
Mark all of your instance variables @private.
Use @property and “dot notation” to access instance variables.

Create methods to set/get an instance variable’s value
@interface MyObject : NSObject
{
@private
 int eye;
}
- (int)eye;
- (void)setEye:(int)anInt;
@end

Now anyone can access your instance variable using “dot notation”
Stanford
CS193p

Fall 2010

someObject.eye = newEyeValue; // set the instance variable
int eyeValue = someObject.eye; // get the instance variable’s current value

Note the capitalization.
Instance variables almost always start with lower case.
In any case, the letter after “set” MUST be capitalized.

Otherwise dot notation will not work.

Properties
@property
You can get the compiler to generate set/get method declarations with @property directive
@interface MyObject : NSObject
{
@private
 int eye;
}

Stanford
CS193p

Fall 2010

@property int eye;
- (int)eye;
- (void)setEye:(int)anInt;
@end

Properties
@property
You can get the compiler to generate set/get method declarations with @property directive
@interface MyObject : NSObject
{
@private
 int eye;
}

Stanford
CS193p

Fall 2010

@property int eye;
@end

Properties
@property
You can get the compiler to generate set/get method declarations with @property directive
@interface MyObject : NSObject
{
@private
 int eye;
}

If you use the readonly keyword, only the getter will be declared
@property (readonly) int eye; // does not declare a setEye: method

Stanford
CS193p

Fall 2010

@property int eye;
@end

Properties
An @property does not have to match an instance variable name
For example ...
@interface MyObject : NSObject
{
@private
 int p_eye;
}
@property int eye;
@end

In fact, you do not even have to have a matching variable at all
The following is perfectly legal ...
@interface MyObject : NSObject
{
}
@property int eye;
@end

Stanford
CS193p

Fall 2010

Properties
But whatever you declare, you must then implement
For example, consider the following header (.h) file:
@interface MyObject : NSObject
{
@private
 int eye;
}
@property int eye;
@end

The corresponding implementation (.m) file might look like this:
@implementation MyObject
- (int)eye {
 return eye;
}
- (void)setEye:(int)anInt {
 eye = anInt;
}

@end
Stanford
CS193p

Fall 2010

Properties
Or consider the case where the variable name is different
Header (.h) file:
@interface MyObject : NSObject
{
@private
 int p_eye;
}
@property int eye;
@end

Corresponding implementation (.m) file:
@implementation MyObject
- (int)eye {
 return p_eye;
}
- (void)setEye:(int)anInt {
 p_eye = anInt;
}

@end
Stanford
CS193p

Fall 2010

Properties
Or how about the “no corresponding variable” case?
Header (.h) file:
@interface MyObject : NSObject
{
}
@property (readonly) int eye;
@end

Implementation (.m) file:
@implementation MyObject
- (int)eye
{
 return <some calculated value for eye>;
}
@end

Stanford
CS193p

Fall 2010

Properties
Let the compiler help you with implementation using @synthesize!
Header (.h) file:
@interface MyObject : NSObject
{
@private
 int eye;
}
@property int eye;
@end

Implementation (.m) file:
@implementation MyObject

Stanford
CS193p

Fall 2010

@synthesize eye;
- (int)eye {
 return eye;
}
- (void)setEye:(int)anInt {
 eye = anInt;
}
@end

Properties
Let the compiler help you with implementation using @synthesize!
Header (.h) file:
@interface MyObject : NSObject
{
@private
 int eye;
}
@property int eye;
@end

Implementation (.m) file:
@implementation MyObject

Stanford
CS193p

Fall 2010

@synthesize eye;
@end

Properties
Let the compiler help you with implementation using @synthesize!
Header (.h) file:
@interface MyObject : NSObject
{
@private
 int eye;
}
@property int eye;
@end

Implementation (.m) file:
@implementation MyObject

You can even get @synthesize to use a different variable
@synthesize eye = p_eye;

Stanford
CS193p

Fall 2010

@synthesize eye;
@end

Properties
If you use @synthesize, you can still implement one or the other
@implementation MyObject
@synthesize eye;
- (void)setEye:(int)anInt {
 if (anInt > 0) eye = anInt;
}
@end

The method - (int)eye will still be implemented for you by @synthesize
Your implementation of setEye: is the one that will count
If you implemented both the setter and the getter, the @synthesize would be ignored

Stanford
CS193p

Fall 2010

Properties
It’s common to use dot notation to access ivars inside your class
It’s not the same as referencing the instance variable directly.
For example, if eye is an instance variable ...
int x = eye;
... inside a method is not the same as ...
int x = self.eye;
The latter calls the getter method (which is usually what you want for subclassability).

But occasionally things can go terribly wrong!
What’s wrong with the following code?
- (void)setEye:(int)anInt
{
 self.eye = anInt;
}

Stanford
CS193p

Fall 2010

Infinite loop. Can happen with the getter too ...
- (int)eye { if (self.eye > 0) { return eye; } else { return -1; } }

Properties
Why properties?
Most importantly, it provides safety and subclassability for instance variables.
But the syntax also makes code look more consistent with C structs.

Stanford
CS193p

Fall 2010

typedef struct {
 float x;
 float y;
} Point;

@interface Bomb
@property Point position;
@end

@interface Ship : Vehicle {
 float width, height;
 Point center;
}
@property float width;
@property float height;
@property Point center;
- (BOOL)getsHitByBomb:(Bomb *)bomb;
@end

Notice that we capitalize Point (just like a class name).
It makes our C struct seem just like an object

Properties
Why properties?
Most importantly, it provides safety and subclassability for instance variables.
But the syntax also makes code look more consistent with C structs.

Stanford
CS193p

Fall 2010

typedef struct {
 float x;
 float y;
} Point;

@interface Bomb
@property Point position;
@end

@interface Ship : Vehicle {
 float width, height;
 Point center;
}
@property float width;
@property float height;
@property Point center;
- (BOOL)getsHitByBomb:(Bomb *)bomb;
@end

Instance variables may or may not exist here.
Remember that @property is just declaring the property.

Bomb would still have to implement setter and getter
(could use @synthesize, of course).

Properties
Why properties?
Most importantly, it provides safety and subclassability for instance variables.
But the syntax also makes code look more consistent with C structs.

Stanford
CS193p

Fall 2010

typedef struct {
 float x;
 float y;
} Point;

@interface Bomb
@property Point position;
@end

@interface Ship : Vehicle {
 float width, height;
 Point center;
}
@property float width;
@property float height;
@property Point center;
- (BOOL)getsHitByBomb:(Bomb *)bomb;
@end

Returns whether the passed bomb
would hit the receiving Ship.

Properties
Why properties?
Most importantly, it provides safety and subclassability for instance variables.
But the syntax also makes code look more consistent with C structs.

Stanford
CS193p

Fall 2010

typedef struct {
 float x;
 float y;
} Point;

@interface Bomb
@property Point position;
@end

@interface Ship : Vehicle {
 float width, height;
 Point center;
}
@property float width;
@property float height;
@property Point center;
- (BOOL)getsHitByBomb:(Bomb *)bomb;
@end

@implementation Ship

@synthesize width, height, center;

- (BOOL)getsHitByBomb:(Bomb *)bomb
{
 float leftEdge = self.center.x - self.width/2;
 float rightEdge = ...;

 return ((bomb.position.x >= leftEdge) &&
 (bomb.position.x <= rightEdge) &&
 (bomb.position.y >= topEdge) &&
 (bomb.position.y <= bottomEdge));
}

@end

Notice access to instance
variable using property of self

instead of directly.

Properties
Why properties?
Most importantly, it provides safety and subclassability for instance variables.
But the syntax also makes code look more consistent with C structs.

Stanford
CS193p

Fall 2010

typedef struct {
 float x;
 float y;
} Point;

@interface Bomb
@property Point position;
@end

@interface Ship : Vehicle {
 float width, height;
 Point center;
}
@property float width;
@property float height;
@property Point center;
- (BOOL)getsHitByBomb:(Bomb *)bomb;
@end

@implementation Ship

@synthesize width, height, center;

- (BOOL)getsHitByBomb:(Bomb *)bomb
{
 float leftEdge = self.center.x - self.width/2;
 float rightEdge = ...;

 return ((bomb.position.x >= leftEdge) &&
 (bomb.position.x <= rightEdge) &&
 (bomb.position.y >= topEdge) &&
 (bomb.position.y <= bottomEdge));
}

@end Dot notation to reference
an object’s property.

Properties
Why properties?
Most importantly, it provides safety and subclassability for instance variables.
But the syntax also makes code look more consistent with C structs.

Stanford
CS193p

Fall 2010

typedef struct {
 float x;
 float y;
} Point;

@interface Bomb
@property Point position;
@end

@interface Ship : Vehicle {
 float width, height;
 Point center;
}
@property float width;
@property float height;
@property Point center;
- (BOOL)getsHitByBomb:(Bomb *)bomb;
@end

@implementation Ship

@synthesize width, height, center;

- (BOOL)getsHitByBomb:(Bomb *)bomb
{
 float leftEdge = self.center.x - self.width/2;
 float rightEdge = ...;

 return ((bomb.position.x >= leftEdge) &&
 (bomb.position.x <= rightEdge) &&
 (bomb.position.y >= topEdge) &&
 (bomb.position.y <= bottomEdge));
}

@end Dot notation to reference
an object’s property.

Normal C struct
dot notation.

Private Properties
Do all @propertys have to be public?
No. It is possible to declare a “private interface” to your class inside your implementation file.

Example (this is all in MyObject’s .m file):
@interface MyObject()
@property double myEyesOnly;
@end

@implementation MyObject
@synthesize eye, myEyesOnly;

@end

The property myEyesOnly can only be set/get via self.myEyesOnly since it is private.

Stanford
CS193p

Fall 2010

This is the “magic” to declare your private stuff.
You can put properties and methods here, but
not more instance variables.

Properties
There’s more to think about when a @property is an object
We’ll postpone that discussion to later on when we talk about memory management

Stanford
CS193p

Fall 2010

Dynamic Binding
All objects are allocated in the heap, so you always use a pointer
Examples ...
NSString *s = ...; // “static” typed
id obj = s;
Never use “id *” (that would mean “a pointer to a pointer to an object”).

Decision about code to run on message send happens at runtime
Not at compile time. None of the decision is made at compile time.
Static typing (e.g. NSString * vs. id) is purely an aid to the compiler to help you find bugs.
If neither the class of the receiving object nor its superclasses implements that method: crash!

It is legal (and sometimes even good code) to “cast” a pointer
But we usually do it only after we’ve used “introspection” to find out more about the object.
More on introspection in a minute.
id obj = ...;
NSString *s = (NSString *)obj; // dangerous ... best know what you are doing Stanford

CS193p
Fall 2010

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Object Typing

No compiler warning.
Perfectly legal since s “isa” Vehicle.

Normal object-oriented stuff here.

Stanford
CS193p

Fall 2010

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;

Object Typing

No compiler warning.
Perfectly legal since s “isa” Vehicle.

Stanford
CS193p

Fall 2010

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

Object Typing

Compiler warning!
Would not crash at runtime though.

But only because we know v is a Ship.
Compiler only knows v is a Vehicle.

Stanford
CS193p

Fall 2010

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];

No compiler warning.
The compiler knows that the method shoot exists,
so it’s not impossible that obj might respond to it.

But we have not typed obj enough for the compiler to be sure it’s wrong.
So no warning.

Might crash at runtime if obj is not a Ship
(or an object of some other class that implements a shoot method).

Object Typing

Stanford
CS193p

Fall 2010

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

Object Typing

Compiler warning!
Compiler has never heard of this method.

Therefore it’s pretty sure obj will not respond to it.

Stanford
CS193p

Fall 2010

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

NSString *hello = @”hello”;
[hello shoot];

Object Typing

Compiler warning.
The compiler knows that NSString objects

do not respond to shoot.
Guaranteed crash at runtime.

Stanford
CS193p

Fall 2010

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

NSString *hello = @”hello”;
[hello shoot];
Ship *helloShip = (Ship *)hello;

Object Typing

Stanford
CS193p

Fall 2010

No compiler warning.
We are “casting” here.

The compiler thinks we know what we’re doing.

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

NSString *hello = @”hello”;
[hello shoot];
Ship *helloShip = (Ship *)hello;
[helloShip shoot];

Object Typing

Stanford
CS193p

Fall 2010

No compiler warning!
We’ve forced the compiler to

think that the NSString is a Ship.
“All’s well,” the compiler thinks.

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

NSString *hello = @”hello”;
[hello shoot];
Ship *helloShip = (Ship *)hello;
[helloShip shoot];
[(id)hello shoot];

Object Typing

Stanford
CS193p

Fall 2010

No compiler warning!
We’ve forced the compiler to ignore
the object type by “casting” in line.

“All’s well,” the compiler thinks.
Guaranteed crash at runtime.

Introspection
So when do we use id? Isn’t it always bad?
No, we might have a collection (e.g. an array) of objects of different classes.
But we’d have to be sure we know which was which before we sent messages to them.
How do we do that? Introspection.

All objects that inherit from NSObject know these methods
isKindOfClass: returns whether an object is that kind of class (inheritance included)
isMemberOfClass: returns whether an object is that kind of class (no inheritance)
respondsToSelector: returns whether an object responds to a given method

Arguments to these methods are a little tricky
Class testing methods take a Class
You get a Class by sending the class method class to a class :)
if ([obj isKindOfClass:[NSString class]]) {
 NSString *s = [(NSString *)obj stringByAppendingString:@”xyzzy”];
}

Stanford
CS193p

Fall 2010

Introspection
Method testing methods take a selector (SEL)
Special @selector() directive turns the name of a method into a selector
if ([obj respondsToSelector:@selector(shoot)]) {
 [obj shoot];
}

SEL is the Objective-C “type” for a selector
SEL shootSelector = @selector(shoot);
SEL moveToSelector = @selector(moveTo:);

Target/action uses this, e.g. [button addTarget:self action:@selector(digitPressed:)]

If you have a SEL, you can ask an object to perform it
Using the performSelector: or performSelector:withObject: methods in NSObject
[obj performSelector:shootSelector];
[obj performSelector:moveToSelector withObject:coordinate];

Stanford
CS193p

Fall 2010

nil
The value of an object pointer that does not point to anything
id obj = nil;
NSString *hello = nil;

Like “zero” for a primitive type (int, double, etc.)
Actually, it’s not “like” zero: it is zero.

NSObject sets all its instance variables to zero
Thus, instance variables that are pointers to objects start out with the value of nil.

Can be implicitly tested in an if statement
if (obj) { } // curly braces will execute if obj points to an object

Sending messages to nil is (mostly) okay. No code gets executed.
If the method returns a value, it will return zero.
int i = [obj methodWhichReturnsAnInt]; // i will be zero if obj is nil
Be careful if the method returns a C struct. Return value is undefined.
CGPoint p = [obj getLocation]; // p will have an undefined value if obj is nil

Stanford
CS193p

Fall 2010

BOOL
Objective-C’s boolean “type” (actually just a typedef)
Can be tested implicitly
if (flag) { }
if (!flag) { }

YES means “true,” NO means “false”
NO == 0, YES is anything else
if (flag == YES) { }
if (flag == NO) { }
if (flag != NO) { }

Stanford
CS193p

Fall 2010

Foundation Framework
 NSObject
Base class for pretty much every object in the iOS SDK
Implements memory management primitives (more on this later)
Implements introspection methods
- (NSString *)description is a useful method to override (it’s %@ in NSLog()).

Stanford
CS193p

Fall 2010

Foundation Framework
 NSString

 NSMutableString
Mutable version of NSString.
Can do some of the things NSString can do without creating a new one (i.e. in-place changes).
NSMutableString *mutString = [[NSMutableString alloc] initWithString:@“0.”];
[mutString appendString:digit]; Stanford

CS193p
Fall 2010

International (any language) strings using Unicode.
Used throughout iOS instead of C language’s char * type.
Compiler will create an NSString for you using @“foo” notation.
An NSString instance can not be modified! They are immutable.
Usual usage pattern is to send a message to an NSString and it will return you a new one.
[display setText:[[display text] stringByAppendingString:digit]];
display.text = [display.text stringByAppendingString:digit]; // same but with properties
display.text = [NSString stringWithFormat:@“%g”, brain.operand]; // class method
Tons of utility functions available (case conversion, URLs, substrings, type conversions, etc.).

Foundation Framework
 NSNumber
Object wrapper around primitive types like int, float, double, BOOL, etc.
NSNumber *num = [NSNumber numberWithFloat:36.5];
float f = [num floatValue];
Useful when you want to put these primitive types in a collection (e.g. NSArray or NSDictionary).

 NSValue
Generic object wrapper for other non-object data types.
CGPoint point = CGPointMake(25.0, 15.0);
NSValue *val = [NSValue valueWithCGPoint:point];

 NSData
“Bag of bits.”
Used to save/restore/transmit data throughout the iOS SDK.

 NSDate
Used to find out the time right now or to store past or future times/dates.
See also NSCalendar, NSDateFormatter, NSDateComponents. Stanford

CS193p
Fall 2010

Foundation Framework
 NSArray

 NSMutableArray
Mutable version of NSArray.

Stanford
CS193p

Fall 2010

Ordered collection of objects.
Immutable. That’s right, you cannot add or remove objects to it once it’s created.
Important methods:
+ (id)arrayWithObjects:(id)firstObject, ...;
- (int)count;
- (id)objectAtIndex:(int)index;
- (void)makeObjectsPerformSelector:(SEL)aSelector;
- (NSArray *)sortedArrayUsingSelector:(SEL)aSelector;
- (id)lastObject; // returns nil if there are no objects in the array (convenient)

- (void)addObject:(id)anObject;
- (void)insertObject:(id)anObject atIndex:(int)index;
- (void)removeObjectAtIndex:(int)index;

Foundation Framework
 NSDictionary

 NSMutableDictionary
Mutable version of NSDictionary.

Stanford
CS193p

Fall 2010

Hash table. Look up objects using a key to get a value.
Immutable. That’s right, you cannot add or remove objects to it once it’s created.
Keys are objects which must implement - (NSUInteger)hash & - (BOOL)isEqual:(NSObject *)obj
Keys are usually NSString objects.
Important methods:
- (int)count;
- (id)objectForKey:(id)key;
- (NSArray *)allKeys;
- (NSArray *)allValues;

- (void)setObject:(id)anObject forKey:(id)key;
- (void)removeObjectForKey:(id)key;
- (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary;

Foundation Framework
 NSSet

 NSMutableSet
Mutable version of NSSet.

Stanford
CS193p

Fall 2010

Unordered collection of objects.
Immutable. That’s right, you cannot add or remove objects to it once it’s created.
Important methods:
- (int)count;
- (BOOL)containsObject:(id)anObject;
- (id)anyObject;
- (void)makeObjectsPerformSelector:(SEL)aSelector;

- (id)member:(id)anObject; // uses isEqual: and returns a matching object (if any)

- (void)addObject:(id)anObject;
- (void)removeObject:(id)anObject;
- (void)unionSet:(NSSet *)otherSet;
- (void)minusSet:(NSSet *)otherSet;
- (void)intersectSet:(NSSet *)otherSet;

Enumeration
Looping through members of a collection in an efficient manner
Language support using for-in (similar to Java)

Stanford
CS193p

Fall 2010

Example: NSArray of NSString objects
NSArray *myArray = ...;
for (NSString *string in myArray) {
 double value = [string doubleValue]; // crash here if string is not an NSString
}

Example: NSSet of id (could just as easily be an NSArray of id)
NSSet *mySet = ...;
for (id obj in mySet) {
 // do something with obj, but make sure you don’t send it a message it does not respond to
 if ([obj isKindOfClass:[NSString class]]) {
 // send NSString messages to obj with impunity
 }
}

Enumeration
Looping through the keys or values of a dictionary

Stanford
CS193p

Fall 2010

Example:
NSDictionary *myDictionary = ...;
for (id key in myDictionary) {
 // do something with key here

 id value = [myDictionary objectForKey:key];
 // do something with value here

}

The term “Property List” just means a collection of collections
Specifically, it is any graph of objects containing only the following classes:
NSArray, NSDictionary, NSNumber, NSString, NSDate, NSData

An NSArray is a Property List if all its members are too
So an NSArray of NSString is a Property List.
So is an NSArray of NSArray as long as those NSArray’s members are Property Lists.

An NSDictionary is one only if all keys and values are too
An NSArray of NSDictionarys whose keys are NSStrings and values are NSNumbers is one.

Why define this term?
Because the SDK has a number of methods which operate on Property Lists.
Usually to read them from somewhere or write them out to somewhere.
[plist writeToFile:(NSString *)path atomically:(BOOL)]; // plist is NSArray or NSDictionary

Stanford
CS193p

Fall 2010

Property List

Next Time
More Foundation

Object Allocation/Initialization

Memory Management

Demo

Stanford
CS193p

Fall 2010

