
Stanford CS193p
Fall 2011

Developing Applications for iOS
Fall 2011

Stanford CS193p

Stanford CS193p
Fall 2011

Today
iCloud
Sharing documents among a user’s devices

Stanford CS193p
Fall 2011

iCloud
Fundamentally: nothing more than a URL of a shared directory
However, since it is over the network, there are lots of things to consider.
Most importantly, latency and the ramifications of shared access.

Entitlements
In order for your application to access the cloud, you must set up its entitlements.
Luckily this is a single button click in Xcode:

Stanford CS193p
Fall 2011

iCloud
The URL
Assuming you just have one container in your Entitlements ...
[[NSFileManager defaultManager] URLForUbiquityContainerIdentifier:nil];
Usually you put your documents in the @“Documents” directory (special) inside this URL.

NSFileManager
You can use it, but you don’t want to use it in the main thread (it’s happening over the network).
Don’t use it to enumerate the contents of directories (need an always-updating query for that).
And you also will want to “coordinate” any file operations with other devices.
Coordination happens among NSFilePresenters using the NSFileCoordinator class.

NSFilePresenter
This class is an abstraction for something that “presents” the data of a file/directory to the user.
Your presenter would get involved whenever a coordinated change to the file/directory occurs.
Not going to cover NSFilePresenter’s API in this class.
Instead, we’ll talk about UIManagedDocument (which is an NSFilePresenter).

Stanford CS193p
Fall 2011

iCloud
UIDocument
An NSFilePresenter.
Abstraction for a document.
Automatically coordinates changes to the document.
Primary methods you’d override would be ...
- (id)contentsForType:(NSString *)type error:(NSError **)error;
- (BOOL)loadFromContents:(id)contents ofType:(NSString *)type error:(NSError **)error;
If your data is stored in a Core Data database, though, you’d use UIManagedDocument.

UIManagedDocument
Fully iCloud capable.
You need only sign up for the appropriate notifications to keep your UI in sync.
Put your UIManagedDocuments into the Documents directory in iCloud.
iCloudDocumentsURL = [iCloudURL URLByAppendingPathComponent:@“Documents”];

Stanford CS193p
Fall 2011

iCloud
Only UIManagedDocument changes should be synced to iCloud
Uploading only a log of changes is a lot better performing than uploading the whole database!
To get this, you must set your document’s persistentStoreOptions dictionary to include these ...
NSPersistentStoreUbiquitousContentNameKey (the “name” of the document)
NSPersistentStoreUbiquitousContentURLKey (where all change logs are stored in iCloud)
Change logs directory (ContentURLKey) should not be stored in the Documents directory in iCloud!
ContentURLKey is something like [iCloudURL URLByAppendingPathComponent:@“CoreData”]
All of your documents can share the same ContentURLKey.

Document Metadata
Strictly speaking, you should get the ContentNameKey from the document’s metadata.
You can read it from DocumentMetadata.plist inside the document’s file wrapper.
For example, if “docURL” were the URL that pointed to the UIManagedDocument in the cloud,
 then create a dictionary from the following URL (coordinated!) to get the values for the keys ...
NSURL *metadataURL = [docURL URLByAppendingPathComponent:@“DocumentMetadata.plist”];
Then set the keys in persistentStoreOptions, and then call openWithCompletionHandler:.

Stanford CS193p
Fall 2011

iCloud
Enumerating what’s in the Cloud
Create a query, start it, then watch for NSNotifications that the results have changed.

Creating a query
NSMetadataQuery *query = [[NSMetadataQuery alloc] init];
query.searchScopes = [NSArray arrayWithObjects:scope1, scope2, nil];
NSMetadataQueryUbiquitousDocumentsScope is all files in the Documents directory.
NSMetadataQueryUbiquitousDataScope is all files NOT in the Documents directory.
query.predicate =
 [NSPredicate predicateWithFormat:@“%K like ‘*’”, NSMetadataItemFSNameKey]; // all

Starting/stopping the query
[query startQuery] or [query stopQuery]

Enabling/disabling NSNotifications
[query enableUpdates] or [query disableUpdates]
Probably a good idea to do this in viewWillAppear:/viewWillDisappear:

Stanford CS193p
Fall 2011

iCloud
Signing up to receive the query NSNotifications
NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
[center addObserver:self
 selector:@selector(processQueryResults:)
 name:NSMetadataQueryDidFinishGatheringNotification // first results
 object:query];
[center addObserver:self
 selector:@selector(processQueryResults:)
 name:NSMetadataQueryDidUpdateNotification // subsequent updates
 object:query];

Don’t forget to remove yourself as an observer
- (void)dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

Stanford CS193p
Fall 2011

iCloud
Processing NSMetadataQuery NSNotifications
- (void)processQueryResults:(NSNotification *)notification
 [query disableUpdates];
 int resultCount = [query resultCount];
 for (int i = 0; i < resultCount; i++) {
 NSMetadataItem *item = [query resultAtIndex:i];
 NSURL *url = [item valueForAttribute:NSMetadataItemURLKey];
 // do something with the urls here
 // but remember that these are URLs of the files inside the file wrapper!
 }
 [query enableUpdates];
}

Stanford CS193p
Fall 2011

iCloud
Coordinating changes
Should be done whenever you access an iCloud URL using NSFileManager.
Do this outside the main thread!

NSFileCoordinator
NSFileCoordinator *coordinator = [[NSFileCoordinator alloc] initWithFilePresenter:nil];
NSError *coordinationError;
[coordinator coordinateReadingItemAtURL:(NSURL *)url
 options:(NSFileCoordinatorReadingOptions)options
 error:(NSError **)error
 byAccessor:^(NSURL *urlToUse) {
 // do your NSFileManager stuff here using urlToUse
}];
if (coordinationError) { } // handle error
Similar methods for coordinating writing, or reading and writing together, or multiple URLs.

Stanford CS193p
Fall 2011

iCloud
Document State
It is more important to pay attention to documentState in an iCloud environment.
There are two states that occur more often now: EditingDisabled and InConflict.
It is also important to watch for SavingError state (and perhaps retry your saves).

Conflict
What if a device detached from the network changed a document that another device changed?
And then the detached device reattached and tried to apply the change and it conflicted?
You must manage this conflict by looking for the InConflict document state.
When it happens, you must decide which version of the document to use and/or merge changes.
Probably want to set your NSManagedObjectContext’s mergePolicy to other than default (Error).
Then update the old, conflicting NSFileVersions to no longer conflict (and remove those versions).
See the demo for a simple example of how to just take the most recent version.

Editing Disabled
Don’t let the user modify a document that is in the EditingDisabled state.

Stanford CS193p
Fall 2011

iCloud
Moving a file to or from iCloud
It would be nice to allow your users to choose whether a document is shared via iCloud or not.
You can switch a document from being shared or not at any time that you are connect to iCloud.
Always do this outside the main thread.

API
Example of exporting to iCloud (you can also go the opposite direction) ...
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 NSURL *localURL = ...; // url of document to transfer to iCloud
 NSString *name = [localURL lastPathComponent];
 NSURL *iCloudURL = [iCloudDocumentsURL URLByAppendingPathComponent:name];
 NSError *error = nil;
 [[[NSFileManager alloc] init] setUbiquitous:YES
 itemAtURL:localURL
 destinationURL:iCloudURL
 error:&error]; // move the document
});

Stanford CS193p
Fall 2011

iCloud
Sharing a file via iCloud
iCloud is mostly for a single user to share stuff between his or her own devices.
However, it is also possible to temporarily export a URL to share a file between users.
Only files (not directories) maybe exported in this way.
The URL points to a copy of the file (so it is a read-only sharing mechanism).

API
NSURL *urlToShare = ...;
NSDate *date;
NSError *error;
NSURL *sharedURL =
 [[NSFileManager defaultManager] URLForPublishingUbiquitousItemAtURL:urlToShare
 expirationDate:&date
 error:&error];

Stanford CS193p
Fall 2011

iCloud
NSUbiquitousKeyValueStore
Like NSUserDefaults, but iCloud-style.
Very limited in size (64kb) (overall and per value).
Use [NSUbiquitousKeyValueStore defaultStore] to get the shared instance.

Set and get just like NSUserDefaults
NSUbiquitousKeyValueStore *store = [NSUbiquitousKeyValueStore defaultStore];
[store setObject:@“MyValue” forKey:@“MyKey”];
[store synchronize]; // not instantaneous! this is networking!
Synchronize synchronizes both ways, so a good idea to call it in your app’s launch somewhere.

Stanford CS193p
Fall 2011

iCloud
Since store can change at any time, need NSNotification
NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
[center addObserver:self
 selector:@selector(ubiquitousKeyValueStoreChanged:)
 name:NSUbiquitousKeyValueStoreDidChangeExternallyNotification
 object:[NSUbiquitousKeyValueStore defaultStore]];

- (void)ubiquitousKeyValueStoreChanged:(NSNotification *)notification
{
 notification.userInfo contains ...
 NSUbiquitousKeyValueStoreChangeReasonKey (Server, InitialSync, QuotaViolation)
 NSUbiquitousKeyValueStoreChangedKeysKey (NSArray of NSStrings of keys that changed)
}
Does NOT get called if YOU change a key, only if the cloud does!

Stanford CS193p
Fall 2011

Demo
iCloud (two-day demo)
Finding out what documents are stored in the cloud
Storing/Retrieving Core Data documents (UIManagedDocuments)
Deleting documents from the cloud (NSFileCoordinator)
Noticing changes to documents in real time
Handling file version conflicts by watching for documentState changes
Cloud NSUserDefaults equivalent

Along the way ...
Getting a “random queue” to do work on (rather than creating a named one)
Generic iCloud-document-handling view controller
NSNotifications
Flexible table view prepareForSegue:sender: implementation
Migrating (automatically) your Core Data schema to a new version
Using AskerViewController again
Editing table views (by allowing rows to be deleted)

Stanford CS193p
Fall 2011

Coming Up
Thursday
More demo!

Friday Section
OpenGL

