
Stanford CS193p
Fall 2011

Developing Applications for iOS
Fall 2011

Stanford CS193p

Stanford CS193p
Fall 2011

Today
NSTimer and “perform after delay”
Two delayed-action alternatives.

More View Animation
Continuation of Kitchen Sink demo

Alerts and Action Sheets
Notifying the user and getting modal answers to questions.

UIImagePickerController
Getting images from the camera or photo library.

Core Motion
Measuring the device’s movement.

Stanford CS193p
Fall 2011

NSTimer
Scheduled invocation of a method in the main queue
NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
 target:self
 selector:@selector(doSomething:)
 userInfo:(id)anyObject
 repeats:(BOOL)yesOrNo];

Not “real time” since it can run only each time around run loop
Setting the time interval too short will essentially block the main thread.
Taking too long each time you’re called could also essentially block the main thread.
Do any time consuming stuff in a thread and just use the timer to update state quickly.

Stopping the timer
- (void)invalidate;
You probably want to nil-out your pointers to the timer after this!

Stanford CS193p
Fall 2011

Perform after Delay
Alternative to NSTimer
NSObject method:
- (void)performSelector:(SEL)aSelector
 withObject:(id)argument
 afterDelay:(NSTimeInterval)seconds;

Executes on the run loop (if any) of the current thread
Only call this on the main thread (other threads possible, but not straightforward).
Not real time (just like NSTimer is not).
Does not execute immediately, even if seconds is 0 (executes “very very soon” in that case).
Can reschedule itself.
Be careful that it stops calling itself when your view controller goes off screen, though.

Example
[self.tableView performSelector:@selector(reloadData) withObject:nil afterDelay:0];
Gives the UITableView a chance to “settle down” (by finishing this turn of the event loop).

Stanford CS193p
Fall 2011

Perform after Delay
Canceling
NSObject class method:
+ (void)cancelPreviousPerformRequestsWithTarget:(id)target
 selector:(SEL)aSelector
 object:(id)object;
+ (void)cancelPreviousPerformRequestsWithTarget:(id)target;

There is no way to query what requests are outstanding
At best, you can cancel and repost to be sure (but it will reset timing, of course).

Stanford CS193p
Fall 2011

Demo
Kitchen Sink
More sophisticated UIView animation
NSTimer
performSelector:withObject:afterDelay:

Stanford CS193p
Fall 2011

Alerts
Two kinds of “pop up and ask the user something” mechanisms
Action Sheets
Alerts

Action Sheets
Slides up from the bottom of the screen on iPhone/iPod Touch, and in a popover on iPad.
Can be displayed from a tab bar, toolbar, bar button item or from a rectangular area in a view.
Usually asks questions that have more than two answers.

Alerts
Pop up in the middle of the screen.
Usually ask questions with only two (or one) answers (e.g. OK/Cancel, Yes/No, etc.).
Very disruptive to your user-interface, so use carefully.
Often used for “asynchronous” problems (“connection reset” or “network fetch failed”).

Stanford CS193p
Fall 2011

Stanford CS193p
Fall 2011

UIActionSheet
Initializer
 -(id)initWithTitle:(NSString *)title
 delegate:(id <UIActionSheetDelegate>)delegate
 cancelButtonTitle:(NSString *)cancelButtonTitle
 destructiveButtonTitle:(NSString *)destructiveButtonTitle
 otherButtonTitles:(NSString *)otherButtonTitles, ...;

And you can add more buttons programmatically
- (void)addButtonWithTitle:(NSString *)buttonTitle;

Displaying the Action Sheet
UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:...];
[actionSheet showInView:(UIView *)]; // centers the view on iPad (don’t use this on iPad)
[actionSheet showFromRect:(CGRect) inView:(UIView *) animated:(BOOL)]; // good on iPad
[actionSheet showFromBarButtonItem:(UIBarButtonItem *) animated:(BOOL)]; // good on iPad
Universal apps require care here (though some can work on both platforms, e.g., showFromRect:).

Stanford CS193p
Fall 2011

UIActionSheet
Finding out what the user has chosen via the delegate
- (void)actionSheet:(UIActionSheet *)sender clickedButtonAtIndex:(NSInteger)index;

Remember from initializer that Cancel/Destructive are special
@property NSInteger cancelButtonIndex; // don’t set this if you set it in initializer
@property NSInteger destructiveButtonIndex; // don’t set this if you set it in initializer

Other indexes
@property (readonly) NSInteger firstOtherButtonIndex;
@property (readonly) NSInteger numberOfButtons;
- (NSString *)buttonTitleAtIndex:(NSInteger)index;
The “other button” indexes are in the order you specified them in initializer and/or added them

You can programmatically dismiss the action sheet as well
- (void)dismissWithClickedButtonIndex:(NSInteger)index animated:(BOOL)animated;
It is generally recommended to call this on UIApplicationDidEnterBackgroundNotification.
Remember also that you might be terminated while you are in the background, so be ready.

Stanford CS193p
Fall 2011

UIActionSheet
Special popover considerations: no Cancel button
An action sheet in a popover (that is not inside a popover) does not show the cancel button.
It does not need one because clicking outside the popover dismisses it.
It will automatically not show the Cancel button (just don’t be surprised that it’s not there).

Special popover considerations: the popover’s passthroughViews
If you showFromBarButtonItem:animated:, it adds the toolbar to popover’s passthroughViews.
This is annoying because repeated touches on the bar button item give multiple action sheets!
Also, other buttons in your toolbar will work (which might or might not make sense).
Unfortunately, you just have to handle this in all of your bar buttons, including the action sheet’s.

Special popover considerations: bar button item handling
Have a weak @property in your class that points to the UIActionSheet.
Set it right after you show the action sheet.
Check that @property at the start of your bar button item’s action method.
If it is not-nil (since it is weak, it will only be non-nil if it’s still on-screen), just dismiss it.
If it is nil, prepare and show your action sheet.

Stanford CS193p
Fall 2011

UIAlertView
Very similar to Action Sheet ...
 -(id)initWithTitle:(NSString *)title
 message:(NSString *)message // different from UIActionSheet
 delegate:(id <UIActionSheetDelegate>)delegate
 cancelButtonTitle:(NSString *)cancelButtonTitle
 otherButtonTitles:(NSString *)otherButtonTitles, ...;

And you can add more buttons programmatically
- (void)addButtonWithTitle:(NSString *)buttonTitle;

Displaying the Action Sheet
UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:...];
[alertView show]; // different from UIActionSheet, always appears in center of screen

Rest of the mechanism is the same as UIActionSheet

Stanford CS193p
Fall 2011

Demo
Kitchen Sink
Putting a stopper in our drain.
Action Sheet

Stanford CS193p
Fall 2011

UIImagePickerController
Modal view to get media from camera or photo library
Modal means you put it up with presentViewController:animated:completion:.
On iPad, you put it up in a UIPopoverController.

Usage
1. Create it with alloc/init and set delegate.
2. Configure it (source, kind of media, user editability).
3. Present it.
4. Respond to delegate method when user is done picking the media.

What the user can do depends on the platform
Some devices have cameras, some do not, some can record video, some can not.
Also, you can only offer camera OR photo library on iPad (not both together at the same time).
As with all device-dependent API, we want to start by check what’s available.
+ (BOOL)isSourceTypeAvailable:(UIImagePickerControllerSourceType)sourceType;
Source type is UIImagePickerControllerSourceTypePhotoLibrary/Camera/SavedPhotosAlbum

Stanford CS193p
Fall 2011

UIImagePickerController
But don’t forget that not every source type can give video
So, you then want to check ...
+ (NSArray *)availableMediaTypesForSourceType:(UIImagePickerControllerSourceType)sourceType;
Returns an array of strings you check against constants.
Check documentation for all possible, but there are two key ones ...
kUTTypeImage // pretty much all sources provide this
kUTTypeMovie // audio and video together, only some sources provide this

Stanford CS193p
Fall 2011

UIImagePickerController
But don’t forget that not every source type can give video
So, you then want to check ...
+ (NSArray *)availableMediaTypesForSourceType:(UIImagePickerControllerSourceType)sourceType;
Returns an array of strings you check against constants.
Check documentation for all possible, but there are two key ones ...
kUTTypeImage // pretty much all sources provide this
kUTTypeMovie // audio and video together, only some sources provide this

These are declared in the MobileCoreServices framework.
#import <MobileCoreServices/MobileCoreServices.h>

and add MobileCoreServices to your list of linked frameworks.

Stanford CS193p
Fall 2011

UIImagePickerController
But don’t forget that not every source type can give video
So, you then want to check ...
+ (NSArray *)availableMediaTypesForSourceType:(UIImagePickerControllerSourceType)sourceType;
Returns an array of strings you check against constants.
Check documentation for all possible, but there are two key ones ...
kUTTypeImage // pretty much all sources provide this
kUTTypeMovie // audio and video together, only some sources provide this

You can get even more specific about front/rear cameras
(Though usually this is not necessary.)
+ (BOOL)isCameraDeviceAvailable:(UIImagePickerControllerCameraDevice)cameraDevice;
Either UIImagePickerControllerCameraDeviceFront or UIImagePickerControllerCameraDeviceRear.
Then check out more about each available camera:
+ (BOOL)isFlashAvailableForCameraDevice:(UIImagePickerControllerCameraDevice);
+ (NSArray *)availableCaptureModesForCameraDevice:(UIImagePickerControllerCameraDevice);
This array contains NSNumber objects with constants UIImagePic...lerCaptureModePhoto/Video.

Stanford CS193p
Fall 2011

UIImagePickerController
Set the source and media type you want in the picker
(From here out, UIImagePickerController will be abbreviated UIIPC for space reasons.)
UIIPC *picker = [[UIIPC alloc] init];
picker.delegate = self; // self has to say it implements UINavigationControllerDelegate too :(
if ([UIIPC isSourceTypeAvailable:UIIPCSourceTypeCamera]) {
 picker.sourceType = UIIPCSourceTypeCamera;
} // else we’ll take what we can get (photo library by default)
NSString *desired = (NSString *)kUTTypeMovie; // e.g., could be kUTTypeImage
if ([[UIIPC availableMediaTypesForSourceType:picker.sourceType] containsObject:desired]) {
 picker.mediaTypes = [NSArray arrayWithObject:desired];
 // proceed to put the picker up
} else {
 // fail, we can’t get the type of media we want from the source we want
}

Notice the cast to NSString here.
kUTTypeMovie (and kUTTypeImage) are CFStrings (Core Foundation strings).

Unfortunately, the cast is required to avoid a warning here.

Stanford CS193p
Fall 2011

UIImagePickerController
Editability
@property BOOL allowsEditing;
If YES, then user will have opportunity to edit the image/video inside the picker.
When your delegate is notified that the user is done, you’ll get both raw and edited versions.

Limiting Video Capture
@property UIIPCQualityType videoQuality;
UIIPCQualityTypeMedium // default
UIIPCQualityTypeHigh
UIIPCQualityType640x480
UIIPCQualityTypeLow
UIPCQualityTypeIFrame1280x720 // native on some devices
UIPCQualityTypeIFrame960x540 // native on some devices
@property NSTimeInterval videoMaximumDuration;

Other
You can control which camera is used, how flash is used, etc., as well (or user can choose).

Stanford CS193p
Fall 2011

UIImagePickerController
Present the picker
Note that on iPad, if you are not offering Camera, you must present with popover.
If you are offering the Camera on iPad, then popover or full-screen modal is okay.
Remember: on iPad, it’s Camera OR Photo Library (not both at the same time).

Delegate will be notified when user is done
- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 // extract image/movie data/metadata here, more on the next slide
 [self dismissModalViewControllerAnimated:YES]; // or popover dismissal
}

Also dismiss it when cancel happens
- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self dismissModalViewControllerAnimated:YES]; // or popover dismissal
}

Stanford CS193p
Fall 2011

UIImagePickerController
What is in that info dictionary?
UIImagePickerControllerMediaType // kUTTypeImage or kUTTypeMovie
UIImagePickerControllerOriginalImage // UIImage
UIImagePickerControllerEditedImage // UIImage
UIImagePickerControllerCropRect // CGRect (in an NSValue)
UIImagePickerControllerMediaMetadata // NSDictionary info about the image to save later
UIImagePickerControllerMediaURL // NSURL edited video
UIImagePickerControllerReferenceURL // NSURL original (unedited) video

Stanford CS193p
Fall 2011

UIImagePickerController
Overlay View
@property UIView *cameraOverlayView;
Be sure to set this view’s frame properly.
Camera is always full screen (modal only, iPhone/iPod Touch only), [[UIScreen mainScreen] bounds].
But if you use the built-in controls at the bottom, you might want your view to be smaller.

Hiding the normal camera controls (at the bottom)
@property BOOL showsCameraControls;
Will leave a blank area at the bottom of the screen (camera’s aspect 4:3, not same as screen’s).
With no controls, you’ll need an overlay view with a “take picture” (at least) button.
That button should send - (void)takePicture to the picker.
Don’t forget to dismissModalViewController: when you are done taking pictures.

You can zoom or translate the image while capturing
@property CGAffineTransform cameraViewTransform;
For example, you might want to scale the image up to full screen (some of it will get clipped).

Stanford CS193p
Fall 2011

Demo
Kitchen Sink
Dropping images into our sink.
UIImagePickerController

Stanford CS193p
Fall 2011

Core Motion
API to access motion sensing hardware on your device
Primary inputs: Accelerometer, Gyro, Magnetometer
Not all devices have all inputs (e.g. only iPhone4 and newest iPod Touch and iPad 2 have a gyro).

Primary class used to get input is CMMotionManager
Create with alloc/init, but use only one instance per application (else performance hit).
It is a “global resource,” so getting one via an application delegate method or class method is okay.

Usage
1. Check to see what hardware is available.
2. Start the sampling going and poll the motion manager for the latest sample it has.
... or ...
1. Check to see what hardware is available.
2. Set the rate at which you want data to be reported from the hardware,
3. Register a block (and a dispatch queue to run it on) each time a sample is taken.

Stanford CS193p
Fall 2011

Core Motion
Checking availability of hardware sensors
@property (readonly) BOOL {accelerometer,gyro,magnetometer,deviceMotion}Available;
The “device motion” is a combination of all available (accelerometer, magnetometer, gyro).
We’ll talk more about that in a couple of slides.

Starting the hardware sensors collecting data
You only need to do this if you are going to poll for data.
- (void)start{Accelerometer,Gyro,Magnetometer,DeviceMotion}Updates;

Is the hardware currently collecting data?
@property (readonly) BOOL {accelerometer,gyro,magnetometer,deviceMotion}Active;

Stop the hardware collecting data
It is a performance hit to be collecting data, so stop during times you don’t need the data.
- (void)stop{Accelerometer,Gyro,Magnetometer,DeviceMotion}Updates;

Stanford CS193p
Fall 2011

Core Motion
Checking the data (polling not recommended, more later)
@property (readonly) CMAccelerometerData *accelerometerData;
CMAccelerometerData object provides @property (readonly) CMAcceleration acceleration;
typedef struct { double x; double y; double z; } CMAcceleration; // x, y, z in “g”
This raw data includes acceleration due to gravity.
@property (readonly) CMGyroData *gyroData;
CMGyroData object has one property @property (readonly) CMRotationRate rotationRate;
typedef struct { double x; double y; double z; } CMRotationRate; // x, y, z in radians/second
Sign of rotation rate follows right hand rule. This raw data will be biased.
@property (readonly) CMMagnetometerData *magnetometerData;
CMMagnetometerData object has one property @property (readonly) CMMagneticField magneticField;
typedef struct { double x; double y; double z; } CMMagneticField; // x, y, z in microteslas
This raw data will be biased.
@property (readonly) CMDeviceMotion *deviceMotion;
CMDeviceMotion is an intelligent combination of gyro and acceleration.
If you have multiple detection hardware, you can report better information about each.

Stanford CS193p
Fall 2011

CMDeviceMotion
Acceleration Data in CMDeviceMotion
@property (readonly) CMAcceleration gravity;
@property (readonly) CMAcceleration userAcceleration; // gravity factored out using gyro
typedef struct { double x; double y; double z; } CMAcceleration; // x, y, z in “g”

Rotation Data in CMDeviceMotion
@property CMRotationRate rotationRate; // bias removed from raw data using accelerometer
typedef struct { double x; double y; double z; } CMRotationRate; // x, y, z in radians/second

@property CMAttitude *attitude; // device’s attitude (orientation) in 3D space

@interface CMAttitude : NSObject // roll, pitch and yaw are in radians
@property (readonly) double roll; // around longitudinal axis passing through top/bottom
@property (readonly) double pitch; // around lateral axis passing through sides
@property (readonly) double yaw; // around axis with origin at center of gravity and
 // perpendicular to screen directed down
 // other mathematical representations of the device’s attitude also available
@end

Stanford CS193p
Fall 2011

CMDeviceMotion
Magnetic Field Data in CMDeviceMotion
@property (readonly) CMCalibratedMagneticField magneticField;
struct {
 CMMagneticField field;
 CMMagneticFieldCalibrationAccuracy accuracy;
} CMCalibratedMagneticField;
enum {
 CMMagneticFieldCalibrationAccuracyUncalibrated,
 Low,
 Medium,
 High
} CMMagneticFieldCalibrationAccuracy;

Stanford CS193p
Fall 2011

Core Motion
Registering a block to receive Accelerometer data
- (void)startAccelerometerUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMAccelerometerHandler)handler;
typedef void (^CMAccelerationHandler)(CMAccelerometerData *data, NSError *error);
We haven’t talked about NSOperationQueue, but think of it as an OO dispatch_queue_t.
Use [[NSOperationQueue alloc] init] or [NSOperation mainQueue (or currentQueue)].

Registering a block to receive Gyro data
- (void)startGyroUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMGyroHandler)handler;
typedef void (^CMGyroHandler)(CMGyroData *data, NSError *error)

Registering a block to receive Magnetometer data
- (void)startMagnetometerUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMMagnetometerHandler)handler;
typedef void (^CMMagnetometerHandler)(CMMagnetometerData *data, NSError *error)

Stanford CS193p
Fall 2011

Core Motion
Registering a block to receive (intelligently) combined data
- (void)startDeviceMotionUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMDeviceMotionHandler)handler;
typedef void (^CMDeviceMotionHandler)(CMDeviceMotion *motion, NSError *error);
Interesting NSError types: CMErrorDeviceRequiresMovement/CMErrorTrueNorthNotAvailable

- (void)startDeviceMotionUpdatesUsingReferenceFrame:(CMAttitudeReferenceFrame)frame
 toQueue:(NSOperationQueue *)queue
 withHandler:(CMDeviceMotionHandler)handler;
enum {
 CMAttitudeReferenceFrameXArbitraryZVertical,
 XArbitraryCorrectedZVertical, // needs magnetometer; more CPU
 XMagneticZVertical, // above + device movement
 XTrueNorthZVertical // requires GPS + magnetometer
}
@property (nonatomic) BOOL showsDeviceMovementDisplay; // whether to put up UI if required

Stanford CS193p
Fall 2011

Core Motion
Setting the rate at which your block gets executed
@property NSTimeInterval accelerometerUpdateInterval;
@property NSTimeInterval gyroUpdateInterval;
@property NSTimeInterval magnetometerUpdateInterval;
@property NSTimeInterval deviceMotionUpdateInterval;

It is okay to add multiple handler blocks
Even though you are only allowed one CMMotionManager.
However, each of the blocks will receive the data at the same rate (as set above).
(Multiple objects are allowed to poll at the same time as well, of course.)

Stanford CS193p
Fall 2011

Coming Up
Friday Section
Ge Wang, Smule

Thanksgiving Break
Gobble, gobble!

