
Stanford CS193p
Fall 2011

Developing Applications for iOS
Fall 2011

Stanford CS193p

Stanford CS193p
Fall 2011

Today
Core Data and Documents
This is how you store something serious in iOS
Easy entreé into iCloud

NSNotificationCenter
The little “radio station” we talked about in the very first lecture

Objective-C Categories
A way to add methods to a class without subclassing

Stanford CS193p
Fall 2011

Core Data
We’re object-oriented programmers and we don’t like C APIs!
We want to store our data using object-oriented programming!

Enter Core Data
Object-oriented database.

It’s a way of creating an object graph backed by a database
Usually SQL.

How does it work?
Create a visual mapping (using Xcode tool) between database and objects.
Create and query for objects using object-oriented API.
Access the “columns in the database table” using @propertys on those objects.

Stanford CS193p
Fall 2011

Creating a visual map of your application’s database objects
New File ... then Data Model under Core Data.

Core Data

This
templateThis section

Stanford CS193p
Fall 2011

Creating a visual map of your application’s database objects
Unless we have multiple databases, usually we name the Data Model our application name

Core Data

Name of Data Model

Stanford CS193p
Fall 2011

The Data Model file.
Sort of like a storyboard for databases.

Stanford CS193p
Fall 2011

The Data Model consists of ...
Entities

Attributes

The Data Model consists of ...
Entities

The Data Model consists of ...The Data Model consists of ...
Entities

Attributes
Relationships

We’re not going to talk about
Fetched Properties

Stanford CS193p
Fall 2011

Click here to add an Entity.

Then type the name here.
We’ll call this first Entity Photo.
It will represent a Flickr photo.

An Entity will appear in our code as an
NSManagedObject (or subclass thereof).

Stanford CS193p
Fall 2011

Now we will add
some Attributes.

We’ll start with title.
Click here to add an

Attribute.

Then edit the name of the Attribute here.

Notice that we have an error.
That’s because our Attribute needs a type.

Stanford CS193p
Fall 2011

Set the type of the title Attribute.
All Attributes are objects.
Numeric ones are NSNumber.
Boolean is also NSNumber.
Binary Data is NSData.

Date is NSDate.
String is NSString.

Don’t worry about Transformable.

Attributes are accessed on our
NSManagedObjects via the methods
valueForKey: and setValueForKey:.

Or, if we subclass NSManagedObject, we
can access Attributes as @propertys.

Stanford CS193p
Fall 2011

Here are a whole
bunch more Attributes.

You can see your Entities and Attributes
in graphical form by clicking here.

Stanford CS193p
Fall 2011

This is the same thing we were just
looking at, but in a graphical view.

Stanford CS193p
Fall 2011

Add another Entity.

These can be dragged
around and positioned around

the center of the graph.

Attributes can be added in
the Graphic Editor too.

And set its name.

A graphical version will appear.

Stanford CS193p
Fall 2011

Here we add an Attribute
called name to Photographer.

We can edit the attribute directly by double-
clicking on it or the Inspector if we prefer.

Let’s set its type as well.

Stanford CS193p
Fall 2011

Similar to outlets and actions,
we can ctrl-drag to create

Relationships between Entities.

Stanford CS193p
Fall 2011

Click on the newRelationship in Photo.

This Relationship to the
Photographer is “who took” the

Photo, so we’ll call this Relationship
whoTook.

Stanford CS193p
Fall 2011

Now we click on the newRelationship in Photographer.

A Photographer can take many
Photos, so we’ll call this Relationship
“photos” on the Photographer side.

We also need to note that there can
be multiple Photos per Photographer.

Stanford CS193p
Fall 2011

The type of this Relationship in
our Objective-C code will be NSSet
(since it is a “to many” Relationship).

The type of this Relationship in our
Objective-C code will be NSManagedObject

(or a subclass thereof).

Note the Data Model’s recognition of
the “inverse” of this Relationship.

Stanford CS193p
Fall 2011

Core Data
There are lots of other things you can do
But we are going to focus on creating Entities, Attributes and Relationships.

So how do you access all of this stuff in your code?
You need an NSManagedObjectContext
It is the hub around which all Core Data activity turns.

How do I get one?
There are two ways ...
1. Create a UIManagedDocument and ask for its managedObjectContext (a @property).
2. Click the “Use Core Data” button when you create a project.
 (then your AppDelegate will have a managedObjectContext @property).
We’re going to focus on doing the first one.

Stanford CS193p
Fall 2011

UIManagedDocument
UIManagedDocument
It inherits from UIDocument which provides a lot of mechanism for the management of storage.
If you use UIManagedDocument, you’ll be on the fast-track to iCloud support.
Think of a UIManagedDocument as simply a container for your Core Data database.

Creating a UIManagedDocument
UIManagedDocument *document = [[UIManagedDocument] initWithFileURL:(URL *)url];

Stanford CS193p
Fall 2011

UIManagedDocument
But you must open/create the document to use it
Check to see if it exists: [[NSFileManager defaultManager] fileExistsAtPath:[url path]]
If it does, open the document ...
- (void)openWithCompletionHandler:(void (^)(BOOL success))completionHandler;
If it does not, create it using ...
- (void)saveToURL:(NSURL *)url
 forSaveOperation:(UIDocumentSaveOperation)operation
 competionHandler:(void (^)(BOOL success))completionHandler;

What is that completionHander?
Just a block of code to execute when the open/save completes.
That’s needed because the open/save is asynchronous!
Do not ignore this fact!

Stanford CS193p
Fall 2011

UIManagedDocument
Example
self.document = [[UIManagedDocument] initWithFileURL:(URL *)url];
if ([[NSFileManager defaultManager] fileExistsAtPath:[url path]]) {
 [document openWithCompletionHandler:^(BOOL success) {
 if (success) [self documentIsReady];
 if (!success) NSLog(@“couldn’t open document at %@”, url);
 }];
} else {
 [document saveToURL:url forSaveOperation:UIDocumentSaveForCreating
 completionHandler:^(BOOL success) {
 if (success) [self documentIsReady];
 if (!success) NSLog(@“couldn’t create document at %@”, url);
 }];
}
// can’t do anything with the document yet (do it in documentIsReady).

Stanford CS193p
Fall 2011

UIManagedDocument
Once document is open/created, you can start using it
But you might want to check its documentState when you do ...
- (void)documentIsReady
{
 if (self.document.documentState == UIDocumentStateNormal) {
 NSManagedObjectContext *context = self.document.managedObjectContext;
 // do something with the Core Data context
 }
}

Other documentStates
UIDocumentStateClosed (not opened or file does not exist yet)
UIDocumentStateSavingError (success will be NO)
UIDocumentStateEditingDisabled (temporarily unless failed to revert to saved)
UIDocumentStateInConflict (e.g., because some other device changed it via iCloud)

The documentState is often “observed”
So it’s about time we talked about using NSNotifications to observe other objects ...

Stanford CS193p
Fall 2011

NSNotification
NSNotificationCenter
Get the default notification center via [NSNotificationCenter defaultCenter]
Then send it the following message if you want to observe another object:
- (void)addObserver:(id)observer // you (the object to get notified)
 selector:(SEL)methodToSendIfSomethingHappens
 name:(NSString *)name // what you’re observing (a constant somewhere)
 object:(id)sender; // whose changes you’re interested in (nil is anyone’s)

You will then be notified when the named event happens
- (void)methodToSendIfSomethingHappens:(NSNotification *)notification
{
 notification.name // the name passed above
 notification.object // the object sending you the notification
 notification.userInfo // notification-specific information about what happened
}

Stanford CS193p
Fall 2011

NSNotification
Example
NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

Watching for changes in a document’s state ...
[center addObserver:self
 selector:@selector(documentChanged:)
 name:UIDocumentStateChangedNotification
 object:self.document];

Don’t forget to remove yourself when you’re done watching.
[center removeObserver:self];
or
[center removeObserver:self name:UIDocumentStateChangedNotification object:self.document];
Failure to remove yourself can sometimes result in crashers.
This is because the NSNotificationCenter keeps an “unsafe unretained” pointer to you.

Stanford CS193p
Fall 2011

NSNotification
Another Example
Watching for changes in a CoreData database (made via a given NSManagedObjectContext) ...
- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [center addObserver:self
 selector:@selector(contextChanged:)
 name:NSManagedObjectContextObjectsDidChangeNotification
 object:self.document.managedObjectContext];
}
- (void)viewWillDisappear:(BOOL)animated
{
 [center removeObserver:self
 name:NSManagedObjectContextObjectsDidChangeNotification
 object:self.document.managedObjectContext];
 [super viewWillDisappear:animated];
}
There’s also an NSManagedObjectContextDidSaveNotification.

Stanford CS193p
Fall 2011

NSNotification
NSManagedObjectContextObjectsDidChangeNotification
or NSManagedObjectContextDidSaveNotification
- (void)contextChanged:(NSNotification *)notification
{
 The notification.userInfo object is an NSDictionary with the following keys:
 NSInsertedObjectsKey // an array of objects which were inserted
 NSUpdatedObjectsKey // an array of objects whose attributes changed
 NSDeletedObjectsKey // an array of objects which were deleted
}

Other things to observe
Look in the documentation for various classes in iOS.
They will document any notifications they will send out.
You can post your own notifications too (see NSNotificationCenter documentation).
Don’t abuse this mechanism!
Don’t use it to essentially get “global variables” in your application.

Stanford CS193p
Fall 2011

UIManagedDocument
Okay, back to UIManagedDocument ...
Saving a document (like creating or opening) is also asynchronous
Documents are auto-saved, but you can explicitly save as well.
You use the same method as when creating, but with a different “save operation.”
[self.document saveToURL:self.document.fileURL
 forSaveOperation:UIDocumentSaveForOverwriting
 completionHandler:^(BOOL success) {
 if (!success) NSLog(@“failed to save document %@”, self.document.localizedName);
}];
// the document is not saved at this point in the code (only once the block above executes)

Note the two UIManagedDocument properties used above:
@property (nonatomic, strong) NSURL *fileURL; // specified originally in initWithFileURL:
@property (readonly) NSString *localizedName; // only valid once associated with a file

Stanford CS193p
Fall 2011

UIManagedDocument
Closing a document is also asynchronous
The document will be closed if there are no strong pointers left to the UIManagedDocument.
But you can close it explicitly as well.
[self.document closeWithCompletionHandler:^(BOOL success) {
 if (!success) NSLog(@“failed to close document %@”, self.document.localizedName);
}];
// the document is not closed at this point in the code (only once the block above executes)

Stanford CS193p
Fall 2011

UIManagedDocument
Multiple instances of UIManagedDocument on the same document
This is perfectly legal, but understand that they will not share an NSManagedObjectContext.
Thus, changes in one will not automatically be reflected in the other.
You’ll have to refetch in other UIManagedDocuments after you make a change in one.
Conflicting changes in two different UIManagedDocuments would have to be resolved by you!
It’s exceedingly rare to have two “writing” instances of UIManagedDocument on the same file.
But a single writer and multiple readers? Not so rare. Just need to know when to refetch.

For your homework, we recommend not doing this
 (i.e. we recommend only having one UIManagedDocument instance per actual document).
This will require you to have a bit of global API, but we’ll forgive it this time :).
Hint #1 on the homework assignment will suggest an API to do this.

Stanford CS193p
Fall 2011

Core Data
Okay, we have an NSManagedObjectContext, now what?
We grabbed it from an open UIManagedDocument’s managedObjectContext @property.
Now we use it to insert/delete objects in the database and query for objects in the database.

Inserting objects into the database
NSManagedObject *photo =
 [NSEntityDescription insertNewObjectForEntityForName:@“Photo”
 inManagedObjectContext:(NSManagedObjectContext *)context];
Note that this NSEntityDescription class method returns an NSManagedObject instance.
All objects in the database are represented by NSManagedObjects or subclasses thereof.
An instance of NSManagedObject is a manifestation of an Entity in our Core Data model
 (the model that we just graphically built in Xcode)
All the Attributes of a newly-inserted object will be nil
 (unless you specify a default value in Xcode)

Stanford CS193p
Fall 2011

Core Data
How to access Attributes in an NSManagedObject instance
You can access them using the following two NSKeyValueObserving protocol methods ...
- (id)valueForKey:(NSString *)key;
- (void)setValue:(id)value forKey:(NSString *)key;
You can also use valueForKeyPath:/setValue:forKeyPath: and it will follow your relationships!

The key is an Attribute name in your data mapping
For example, @“thumbnailURL”

The value is whatever is stored (or to be stored) in the database
It’ll be nil if nothing has been stored yet (unless Attribute has a default value in Xcode).
Note that all values are objects (numbers and booleans are NSNumber objects).
“To-many” mapped relationships are NSSet objects (or NSOrderedSet if ordered).
Non-“to-many” relationships are NSManagedObjects.
Binary data values are NSData objects.
Date values are NSDate objects.

Stanford CS193p
Fall 2011

Core Data
Changes (writes) only happen in memory, until you save
Yes, UIManagedDocument auto-saves.
But explicitly saving when a batch of changes is made is good practice.

Stanford CS193p
Fall 2011

Core Data
But calling valueForKey:/setValueForKey: is pretty messy
There’s no type-checking.
And you have a lot of literal strings in your code (e.g. @“thumbnailURL”)

What we really want is to set/get using @propertys!

No problem ... we just create a subclass of NSManagedObject
The subclass will have @propertys for each attribute in the database.
We name our subclass the same name as the Entity it matches (not strictly required, but do it).
And, as you might imagine, we can get Xcode to generate both the header file @property entries,
 and the corresponding implementation code (which is not @synthesize, so watch out!).

Stanford CS193p
Fall 2011

Select both Entities.
We’re going to have Xcode
generate NSManagedObject
subclasses for them for us.

Stanford CS193p
Fall 2011

Ask Xcode to generate
NSManagedObject
subclasses for our

Entities.

Stanford CS193p
Fall 2011

Pick where you want your
new classes to be stored

(default is often one directory
level higher, so watch out).

This will make your @propertys be scalars
(e.g. int instead of NSNumber *) where possible.
Be careful if one of your Attributes is an NSDate,
you’ll end up with an NSTimeInterval @property.

Stanford CS193p
Fall 2011

Here are the two classes that were generated:
Photo.[mh] and Photographer.[mh]

Stanford CS193p
Fall 2011

See? @propertys for all of Photographer’s
Attributes and Relationships.

These convenience methods are for putting Photo
objects in and out of the photos Attribute.

But you can also just make a mutableCopy of the
photos @property (creating an NSMutableSet), modify it,

then put it back by setting the photos @property.

Stanford CS193p
Fall 2011

Oops, Xcode did not generate the proper
class here for the whoTook @property.

It should have been a Photo *.

Stanford CS193p
Fall 2011

Easy fix. Just generate the classes again.
Clearly there is an “order of generation” problem
(Photo was generated before Photographer was).

Stanford CS193p
Fall 2011

Click Replace to replace the old
Photo.[mh]/Photographer.[mh]

with the new one(s).
You should regenerate these

NSManagedObject subclasses any
time you change your schema.

Stanford CS193p
Fall 2011

Now this is correct.

Stanford CS193p
Fall 2011

What the heck is @dynamic?!

It says “I do not implement the setter or getter for this
property, but send me the message anyway and I’ll use the

Objective-C runtime to figure out what to do.”

There is a mechanism in the Objective-C runtime to “trap”
a message sent to you that you don’t implement.

NSManagedObject does this and calls valueForKey: or
setValueForKey:. Pretty cool.

Now let’s look at Photo.m (the implementation).

Stanford CS193p
Fall 2011

Core Data
So how do I access my Entities’ Attributes with dot notation?
Photo *photo = [NSEntityDescription insertNewObjectForEntityForName:@“Photo” inManagedObj...];
NSString *myThumbnail = photo.thumbnailURL;
photo.thumbnailData = [FlickrFetcher urlForPhoto:photoDictionary format:FlickrPhotoFormat...];
photo.whoTook = ...; // a Photographer object we created or got by querying
photo.whoTook.name = @“CS193p Instructor”; // yes, multiple dots will follow relationships

Stanford CS193p
Fall 2011

Core Data
What if I want to add code to my NSManagedObject subclass?
Hmm, that’s a problem.
Because you might want to modify your schema and re-generate the subclasses!
And it’d be really cool to be able to add code (very object-oriented).
Especially code to create an object and set it up properly (and also tear one down, it turns out).
Or maybe to derive new @propertys based on ones in the database
 (e.g. a UIImage based on a URL in the database).

Time for an aside about an Objective-C feature called “categories” ...

Stanford CS193p
Fall 2011

Categories
Categories are an Objective-C syntax for adding to a class ...
Without subclassing it.
Without even having to have access to the code of the class (e.g. its .m).

Examples
NSString’s drawAtPoint:withFont: method.
This method is added by UIKit (since it’s a UI method) even though NSString is in Foundation.
NSIndexPath’s row and section properties (used in UITableView-related code)
 are added by UIKit too, even though NSIndexPath is also in Foundation.

Syntax
@interface Photo (AddOn)
- (UIImage *)image;
@property (readonly) BOOL isOld;
@end
Categories have their own .h and .m files (usually ClassName+PurposeOfExtension.[mh]).
Categories cannot have instance variables, so no @synthesize allowed in its implementation.

Stanford CS193p
Fall 2011

Categories
Implementation
@implementation Photo (AddOn)
- (UIImage *)image // image is not an attribute in the database, but photoURL is
{
 NSData *imageData = [NSData dataWithContentsOfURL:self.photoURL];
 return [UIImage imageWithData:imageData];
}
- (BOOL)isOld // whether this photo was uploaded more than a day ago
{
 return [self.uploadDate timeIntervalSinceNow] < -24*60*60;
}
@end
Other examples ... sometimes we add @propertys to an NSManagedObject subclass via categories
 to make accessing BOOL attributes (which are NSNumbers) cleaner.
Or we add @propertys to convert NSDatas to whatever the bits represent.
Any class can have a category added to it, but don’t overuse/abuse this mechanism.

Stanford CS193p
Fall 2011

Categories
Most common category on an NSManagedObject subclass?
Creation
@implementation Photo (Create)
+ (Photo *)photoWithFlickrData:(NSDictionary *)flickrData
 inManagedObjectContext:(NSManagedObjectContext *)context
{
 Photo *photo = ...; // see if a Photo for that Flickr data is already in the database
 if (!photo) {
 photo = [NSEntityDescription insertNewObjectForEntityForName:@“Photo”
 inManagedObjectContext:context];
 // initialize the photo from the Flickr data
 // perhaps even create other database objects (like the Photographer)
 }
 return photo;
}
@end

Stanford CS193p
Fall 2011

Choose New File ... from the File menu,
then pick Objective-C category from the Cocoa Touch section.

Stanford CS193p
Fall 2011

Enter the name of the category, as well as
the name of the class the category’s methods will be added to.

Stanford CS193p
Fall 2011

Xcode will create both the .h and the .m for the category.
Remember, you cannot use @synthesize in this .m!

Stanford CS193p
Fall 2011

Deletion
Deletion
Deleting objects from the database is easy (sometimes too easy!)
[self.document.managedObjectContext deleteObject:photo];
Make sure that the rest of your objects in the database are in a sensible state after this.
Relationships will be updated for you (if you set Delete Rule for relationship attributes properly).
And don’t keep any strong pointers to photo after you delete it!

prepareForDeletion
Here is another method we sometimes put in a category of an NSManagedObject subclass ...
@implementation Photo (Deletion)
- (void)prepareForDeletion
{
 // we don’t need to set our whoTook to nil or anything here (that will happen automatically)
 // but if Photographer had, for example, a “number of photos taken” attribute,
 // we might adjust it down by one here (e.g. self.whoTook.photoCount--).
}
@end

Stanford CS193p
Fall 2011

Core Data
So far you can ...
Create objects in the database with insertNewObjectForEntityForName:inManagedObjectContext:.
Get/set properties with valueForKey:/setValueForKey: or @propertys in a custom subclass.
Delete objects using the NSManagedObjectContext deleteObject: method.

One very important thing left to know how to do: QUERY
Basically you need to be able to retrieve objects from the database, not just create new ones
You do this by executing an NSFetchRequest in your NSManagedObjectContext

Four important things involved in creating an NSFetchRequest
1. Entity to fetch (required)
2. NSPredicate specifying which of those Entities to fetch (optional, default is all of them)
3. NSSortDescriptors to specify the order in which fetched objects are returned
4. How many objects to fetch at a time and/or maximum to fetch (optional, all)

Stanford CS193p
Fall 2011

Querying
Creating an NSFetchRequest
We’ll consider each of these lines of code one by one ...
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“Photo”];
request.fetchBatchSize = 20;
request.fetchLimit = 100;
request.sortDescriptors = [NSArray arrayWithObject:sortDescriptor];
request.predicate = ...;

Specifying the kind of Entity we want to fetch
A given fetch returns objects all of the same Entity.
You can’t have a fetch that returns some Photos and some Photographers (one or the other).

Setting fetch sizes/limits
If you created a fetch that would match 1000 objects, the request above faults 20 at a time.
And it would stop fetching after it had fetched 100 of the 1000.

Stanford CS193p
Fall 2011

Querying
NSSortDescriptor
When we execute a fetch request, it’s going to return an NSArray of NSManagedObjects.
NSArrays are “ordered,” so we have to specify the order when we fetch.
We do that by giving the fetch request a list of “sort descriptors” that describe what to sort by.
NSSortDescriptor *sortDescriptor =
 [NSSortDescriptor sortDescriptorWithKey:@“thumbnailURL”
 ascending:YES
 selector:@selector(localizedCaseInsensitiveCompare:)];
There’s another version with no selector: argument (default is the method compare:).
The selector: argument is just a method (conceptually) sent to each object to compare it to others.
Some of these “methods” might be smart (i.e. they can happen on the database side).

We give a list of these to the NSFetchRequest because sometimes we want to sort first by one
 key (e.g. last name), then, within that sort, sort by another (e.g. first name).

Stanford CS193p
Fall 2011

Querying
NSPredicate
This is the guts of how we specify exactly which objects we want from the database.

Predicate formats
Creating one looks a lot like creating an NSString, but the contents have semantic meaning.
NSString *serverName = @“flickr-5”;
NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@“thumbnailURL contains %@”, serverName];

Examples
@“uniqueId = %@”, [flickrInfo objectForKey:@“id”] // unique a photo in the database
@“name contains[c] %@”, (NSString *) // matches name case insensitively
@“viewed > %@”, (NSDate *) // viewed is a Date attribute in the data mapping
@“whoTook.name = %@”, (NSString *) // Photo search (by photographer’s name)
@“any photos.title contains %@”, (NSString *) // Photographer search (not a Photo search)
Many more options. Look at the class documentation for NSPredicate.

Stanford CS193p
Fall 2011

Querying
NSCompoundPredicate
You can use AND and OR inside a predicate string, e.g. @“(name = %@) OR (title = %@)”
Or you can combine NSPredicate objects with special NSCompoundPredicates.
NSArray *array = [NSArray arrayWithObjects:predicate1, predicate2, nil];
NSPredicate *predicate = [NSCompoundPredicate andPredicateWithSubpredicates:array];
This predicate is “predicate1 AND predicate2”.
“Or” predicate also available, of course.

Stanford CS193p
Fall 2011

Querying
Putting it all together
Let’s say we want to query for all Photographers ...
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“Photographer”];
... who have taken a photo in the last 24 hours ...
NSDate *yesterday = [NSDate dateWithTimeIntervalSinceNow:-24*60*60];
request.predicate = [NSPredicate predicateWithFormat:@“any photos.uploadDate > %@”, yesterday];
... sorted by the Photographer’s name ...
NSSortDescriptor *sortByName = [NSSortDescriptor sortDescriptorWithKey:@“name” ascending:YES];
request.sortDescriptors = [NSArray arrayWithObject:sortByName];

Executing the fetch
NSManagedObjectContext *moc = self.document.managedObjectContext;
NSError *error;
NSArray *photographers = [moc executeFetchRequest:request error:&error];
Returns nil if there is an error (check the NSError for details).
Returns an empty array (not nil) if there are no matches in the database.
Returns an array of NSManagedObjects (or subclasses thereof) if there were any matches.
You can pass NULL for error: if you don’t care why it fails.

Stanford CS193p
Fall 2011

Querying
Faulting
The above fetch does not necessarily fetch any actual data.
It could be an array of “as yet unfaulted” objects, waiting for you to access their attributes.
Core Data is very smart about “faulting” the data in as it is actually accessed.
For example, if you did something like this ...
for (Photographer *photographer in photographers) {
 NSLog(@“fetched photographer %@”, photographer);
}
You may or may not see the names of the photographers in the output
 (you might just see “unfaulted object”, depending on whether it prefetched them)
But if you did this ...
for (Photographer *photographer in photographers) {
 NSLog(@“fetched photographer named %@”, photographer.name);
}
... then you would definitely fault all the Photographers in from the database.

Stanford CS193p
Fall 2011

Core Data
There is so much more (that we don’t have time to talk about)!
Optimistic locking (deleteConflictsForObject:)
Rolling back unsaved changes
Undo/Redo
Staleness (how long after a fetch until a refetch of an object is required?)

Stanford CS193p
Fall 2011

Coming Up
Thursday
More Core Data

Friday Section
Mike Ghaffary
Director of Business Development at Yelp!
Also co-founder of BarMax, the most expensive iPhone/iPad app on the AppStore
Topic: Building Apps that People Want

Understanding Market Opportunity
Building a Prototype
Financing a Company or Team
Getting User Feedback
Distribution through the AppStore

