Stanford CS193p

Developing Applications for iOS
Fall 2011

Today

® Core Data and Documents

This is how you store something serious in iOS
Easy entreé into iCloud

® NSNotificationCenter

The little “radio station” we talked about in the very first lecture

@ Objective-C Categories

A way to add methods fo a class without subclassing

Core Data

@ We're object-oriented programmers and we dont like C APIs!
We want to store our data using object-oriented programming!

@ Enter Core Data
Object-oriented database.

@ Its a way of creating an object graph backed by a database
Usually SQL.

@ How does it work?
Create a visual mapping (using Xcode tool) between database and objects.
Create and query for objects using object-oriented API.
Access the “columns in the database table” using @propertys on those objects.

Core Data

@ Creating a visual map of your applications database objects
New File ... then Data Model under Core Data.

Choose a template for your new file:

B ios
Cocoa Touch m
MO
Cand C++
User Interface

Data Model Mapping Model NSManagedObject

- subclass
Resource

Other
& Mac 0S X

Cocoa

Cand C++
User Interface
Core Data
Resource
Other

Data Model

A Core Data model file that allows you to use the design component of Xcode.

Cancel | v

Core Data

@ Creating a visual map of your applications database objects
Unless we have multiple databases, usually we name the Data Model our application name

Choose a template !

Save As: CoreDataExample - |z|

i - ey,
W ios ‘ Where: | [_| CoreDataExample "5’,--‘-‘.&;;:,, —
Cocoa Touch R

Cand C++

User Interface —

: Group | [] CoreDataExample

Resource

Targets (¥ /A CoreDataExample
Other

& Mac 0S X

Cocoa

Cand C++
User Interface
Core Data
Resource
Other

-

Data Model

A Core Data model file that allows you to use the design component of Xcode.

. Cancel | | Previous | | Next |

¥ 1211 target, i0S SDK 5.0

v || CoreDataExample
E} MainStoryboard_iPhone.storyboard
IE] MainStoryboard_iPad.storyboard
[E] CDEViewController.h
@ CDEViewController.m
[l CoreDataExample.xcdatamodeld
» || Supporting Files
» || Frameworks
» | Products

ENTITIES

FETCH REQUESTS

CONFIGURATIONS

The Data Model file.
Sort of like a storyboard for databases.

v Attributes
Type
-~ !
'V Relationships \
Destination Inverse
,v Fetched Properties
¢ r Predicate

No Selection

+ | OB D (® D)

Outline Style

ev

Add Entity

ev

Add Attribute

Editor Style

Stanford CS193p

DU e om

= —
m| I © &
-

v P CoreDataExample

|
Al
}r

B ENTITIES
1 target, iOS SDK 5.0
v || CoreDataExample FETCH REQUESTS
[E] MainStoryboard_iPhone.storyboard

@ MainStoryboard_iPad.storyboard QONFIGURATIONS
[E] CDEViewController.h
@ CDEViewController.m
» | | Supporting Files
» || Frameworks
» [| Products

The Data Model consists of ...
Entities

Attributes
Relationships

O @ I QrsDa%mgls g i0S stice l

v Attributes)
Type
+ - | J
'V Relationships \
Destination Inverse

Predicate

No Selection

We'e not going to falk about

Fetched Properties

ev

+ OF A CQ) Outline Style Add Entity

0'

Add Attribute

Editor Style

Stanford CS193p

DU e om

@ @ l CoreData%mgls g |OS Dewce |

e © 4
. CoreDataExample

1 target, iOS SDK 5.0
v || CoreDataExample
[E] MainStoryboard_iPhone.storyboard
E] MainStoryboard_iPad.storyboard
[E] CDEViewController.h
@ CDEViewController.m

[l CoreDataExample.xcdatamodeld

» || Supporting Files
» || Frameworks
» [| Products

Click here to add

ENTITIES

Bl o

an Enftity.

v Attributes T Etity
Type Name | Entity
Class | NSManagedObject
|| Abstract Entity
+ —| Parent Entity[No Parent Entity :]
: Indexes
¥ Relationships
Destination Inverse
| -
+ - | ¥ User Info
; Value
v Fetched Properties
Predicate
g | =i
¥ Versioning
Hash Modifier | Version Hash Modifier
Renaming ID | Renaming Identifier
Then Type the name here. ¥ Entity Sync
We'll call this first Entity Photo. Synchronization [Enabled)
. . Data Class v
IT will represent a Flickr photo. B EE e (T
Parent | No Parent Relationship :

An Entity will appear in our code as an

NSManagedObject (or subclass thereof).

\
= B8 (+]

+ | OB @A (®)

Outline Style Add Entity

(+]

Add Attribute

Editor Style

Stanford CS193p

DU e om

N d 98
22 o) By Type

ENTITIES

@ @ l CoreData%mgls Z iOS Device |

_ CoreDataExample project
¥ & 1issue o
v . CoreDataExample.xcdatamodel

@ Misconfigured Property
Photo.title must have a defined type

FETCH REQUESTS

CONFIGURATIONS
(@ Default

Now we will add
some Attributes.
We'll start with title.

Click here to add an
Attribute.

Notice that we have an error.

Type

Eﬂﬂe\

+ = |

'V Relationships

Destination

Predicate

¥ Attribute
Name | title
Properties | Transient (¥ Optional
|| Indexed
Attribute Type | Undefined ™
in Spotlight
. = oy ernal Record File
Value
+| =
¥ Versioning

Hash Modifier | Version Hash Modifier

Renaming ID | Renaming Identifier

¥ Attribute Sync

Thats because our Attribute needs a type.

Synchronization | Enabled &)

|| Identity Property
| | Exclude From Change Alert

Client Type [Prefer App
Record | Prefer Truth

a a

©0®)

Outline Style

ev

Add Entity

ov

Add Attribute

Editor Style

Stanford CS193p

DU e om

Undefined

Integer 16
Integer 32
_ | L A AL Integer 64 RIEXC.. LD ple.xc... ; |
| By Type ENTITIES (——— g‘::‘:":' K) | ¥ Attribute
: r—T— Hoak Name title
FETCH REQUESTS S title " Properties 8 Transient (¥ Optional
oolean Indexed
CONFIGURATIONS Date . - "
@ Default — Binary Data J Attribute Type | String ™
) Transformable i Validation | No Value | () Min Length
v F
4 Destination Inverse No Value @ [JiMax ength
Default Value | Default Value
Reg. Ex. | Regular Expression
Set the fype OF the +|+le Attribute. — | J Advanced [_| Index in Spotlight
- - ‘ | | Store in External Record File
All Attributes are objects. e S—— 1
Numeric ones are NSNumber. Predicate Value

Boolean is also NSNumber.
Binary Dafa is NSData. + -
Date IS NSDate.
String IS NSString.
Dont worry about Transformable.

Attributes are accessed on our
NSManagedObjects via the methods
valueForKey: and setValueForKey:. Version Hash Modifier

Or, if we subclass NSManagedObject, we ISl

can access Attributes as @propertys. 'E; bled 3

|| Identity Property
|| Exclude From Change Alert

Client Type [Prefer App
Record | Prefer Truth

)
)

a a

e o - B Stanford C$193Q
®©O®)| OutlineStyle Add Entity Add Attribute Editor Style a | O ﬂl—it

Xcode

@ @ | CoreDataExamgle Z iOS Device | D

g o
e B No Issues

APE SeSALLRFASEE S Sud

—t’ ot

L
-

P ,_,,—T—,, _!, ,,,f’i, S ,,,,,7\. ,.,,,,, i | s ———————— |
By Type ENTITIES pe————— 1| ¥ Attribute
"NotC Type Name | title
. A o a
FETCH REQUESTS photoURL String v Properties || Transient @ Optional
subtitle String v D Indexed
CONFIGURATIONS thumbnailData Binary Data + : :
@ Default thumbnailURL String + Attribute Type | String :
Validation| o Vatee [1)|CJ Min Length

&) uploadDate Date +

No Val
e | o aue@ [Max Length

Default Value Default Value

v Relationshi
= Reg. Ex. | Regular Expression

Destination Inverse
Advanced [_| Index in Spotlight
Here are a WhOle | | Store in External Record File
bunch more Attributes. ¥ User Info
i+ =) Value

,v Fetched Properties
Predicate

+ |-

¥ Versioning

Hash Modifier | Version Hash Modifier

Renaming ID | Renaming Identifier

¥ Attribute Sync

O
 —

You can Ssee Yyour Entifies and Attributes Synchronization _Enabled
0 : . . || Identity Property
in graphical form by clicking here. (] Exclude From Change Alert
Client Type [Prefer App $]
Record | Prefer Truth s |

o o Stanford CS193p

~—

CHOR(C))| OutlineStyle Add Entity Add Attribute Editor Style L

Xcode

By Type ENTITIES v Entity
"nota Name ' Photo
FETCH REQUESTS Class | NSManagedObject
CONFIGURATIONS Ot
@ Default Parent Entity [No Parent Entity :]
This IS the same thing we were just — '
looking at, buf in a graphical view.
T -
¥ User Info |
. Photo Value
¥ Attributes
photoURL
subtitle
{thumbnailData I e
thumbnailURL —— .
title ¥ Versioning]
uploadDate Hash Modifier | Version Hash Modifier
(¥ Relationships)
Renaming ID | Renaming Identifier
¥ Entity Sync |
Synchronization [Enabled =]
Data Class v |
|| Exclude From Change Alert
Parent | No Parent Relationship :
(+) o Stanford CS193p
00>)| OutlineStyle Add Entity AddAuribute Editorstyle | PR {)} @ m

O @ I QrsDa%mgls 2 i0S Device l

!
= —— - T
= Ay orepata ’
= 1 U -, - e
. — o | R

m II @4 2|
By Type ENTITIES
Photo

Photnglapher

FETCH REQUESTS

CONFIGURATIONS
(@ Default

Add another Entity.

No Issues

And set its name.

Xcode

No Issues

A graphical version will appear.

[Photo

¥ Attributes
photoURL
subtitle
thumbnailData
thumbnailURL
title
uploadDate

¥ Relationships

Photographer

1Y Attributes

¥ Relationships

These can be dragged
around and positioned around

the cenfer of the graph.

Attributes can be added in

the Graphic Edifor too.

Parent Entity [No Parent Entity

Name Photographer

Class | NSManagedObject

|| Abstract Entity

Indexes

¥ User Info

Value

o

¥ Versioning

Hash Modifier

Renaming ID

Version Hash Modifier

Renaming Identifier

Entity Sync

hronization

Data Class

Parent

| Enabled : |

v

| | Exclude From Change Alert

| No Parent Relationship

~
v

00>

o.

Outline Style Add Entity

@
v

Add Attribute

Editor Style

Stanford CS193p

DU e om

O}

@ l CoreData%mgls Z iOS Device |
LU — ;_..-_:..«;

17

Type ENTITIES v Attribute |
_ CoreDataExample project Photo Name name
v1issue o aperempareate Properties/|_| Transient (¥ Optional
v .CoreDataExample.xcdatamodel bt r:ns ed" ptiona
@ Misconfigured Property FETCH REQUESTS | Indexe
Photographer.name must have a... i 1
Attribute ¥ Undefined
CONFIGURATIONS
Integer 16
G Default Integer 32
A Integer 64
Here we add an Attribute v Ulerinfo| Decimal
Double
called name to Photographer. Float

Boolean

[Photo

¥ Attributes Qate

photoURL Binary Data

subtitle (Photographer | Transformable

thumbnailData J ¥ Attributes ’

thumbnailURL name Renaming Identifier

title ¥ Relationships)

uploadDate h .

¥ Relationships) ronization | Enabled &)

|| Identity Property
C (CC 2 (0 2 ailre o aAoUuDI|Eé || Exclude From Change Alert

Client Type [Prefer App :]

Record | Prefer Truth i)

Lets set its type as well.

(+] [+ Stanford CS193p
®©O®)| OutlineStyle Add Entity Add Attribute Editor Style a | O ﬂl—it

-

o g ”
XU Stor
nuin LUy

- —— —
- — = | mm

A
v

™
@ — Py LR g 8 Py S g — - — — S —
b el f an ’ kil st o a0 b S TS i 2o y b
Aakpoints raanizer
>
yrepata]] . srepats °

= CT w7/ £2N
. By Type ENTITIES v Entity |
E Photo Name | Multiple Values
E Photographer Class | NSManagedObject
FETCH REQUESTS e X |_| Abstract Entity
Similar fto outlets and actions, Parent Entity [No Parent Entity 3
CONFIGURATIONS |
® Default we can ctrl-drag fo create Indexes
Relationships between Entities.
| -
i Photo) ¥ User Info |
¥ Attributes Value
photoURL
subtitle " Photographer |
0thumbnailData | ¥ Attributes
thumbnailURL {name |
title ¥ Relationships +i=|
uploadDate —3{newRelationship) ¥ Versioning |
:e?;:tli;?::siﬁisp Hash Modifier | Version Hash Modifier
) i Renaming ID | Renaming Identifier
¥ Entity Sync |
Synchronization | Enabled ™
Data Class v |

|| Exclude From Change Alert
Parent [No Parent Relationship -]

(+] (+ Stanford CS193p

CNON(S)| Outline Style Add Entity Add Attribute Editor Style

O @ I QrsDa%mgls 2 i0S Device l

ENTITIES

Click on the newRelationship in Photo.

No Issues

»
JLU

Photographer

FETCH REQUESTS

CONFIGURATIONS
(@ Default

orep

pLata g DIE
P e ™ e e . e - A

L Photo |

¥ Attributes

photoURL

subtitle " Photographer |
“thumbnaiIData | ¥ Attributes
thumbnailURL name

title ¥ Relationships
uploadDate —— newRelationship)

whoTook

¥ Relationships

This Relationship fto the
Photographer is “who took™ the

whoTook.

Photo, so we'll call this Relationship

| ¥ Relationship
Name whoTook
Destinatiori | Photographer &)
Inve}Z [newRelationship -]
Properties | | Transient (¥ Optional

Arrlinged | | Ordered
Plural || To-Many Relationship

Count 13 & Minimum
1 @ g Maximum

Delete Rule | Nullify : |

Advanced |_| Index in Spotlight
| | Store in External Record File

¥ User Info

Value

o

¥ Versioning

Hash Modifier | Version Hash Modifier

Renaming ID | Renaming Identifier

¥ Relationship Sync

a
—

Synchronization | Enabled

|| Identity Property
|| Exclude From Change Alert

00>

Outline Style

ev

Add Entity

@
v

Add Attribute

Editor Style

Stanford CS193p

@ @ l CoreData%mgls Z iOS Device |

ENTITIES
Photo

-_— _T_ '\-_/ et
.2 By Type

FETCH REQUESTS

CONFIGURATIONS
(@ Default

Now we click on the newRelationship in Photographer.

thumbnailURL

¥ Relationship

Name photos

Destination/| Photo

Arringed || Ordered
Plural a To-Many

Count Optional

Unlimited

Optional

Relationship

3] () Minimum
@ [} Maximum

Delete Rule | Nullify

|

[Photo

¥ Attributes

photoURL

subtitle ographer
thumbnailData utes

:].

|| Index in Spotlight
| | Store in External Record File

Advanc

¥ UserIn

Value

title v Relatib(-shi ps
uploadDate ———>{photos

¥ Relationships

whoTook e

A Photographer can take many
Photos, so we'll call this Relationship

“photos” on the Photographer side.

o

¥ Versi

Hash fier | Version Hash Modifier

Ren ID | Renaming Identifier
¥ Rel hip Sync
Synchr, ation | Enabled i)
|| Identity Property
e || Exclude From Change Alert

©0®)

Outline Style

& o
v v

Add Entity Add Attribute Editor Style

Stanford CS193p

@ @ l CoreData%mgls Z iOS Device |

-_— _T_ '\-_/ et
22 o) By Type

ENTITIES

The type of this Relationship in our
Objective-C code will be NSManagedObject

Photo

FETCH REQUESTS

CONFIGURATIONS
(@ Default

(or a subclass thereof).

Note the Data Models recognition of
the “inverse” of this Relationship.

[Photo

¥ Attributes
photoURL
subtitle
thumbnailData
thumbnailURL
title
uploadDate

¥ Relationships
whoTook

" Photographer |

¥ Attributes

{name |

¥ Relationships
———>{photos N

The type of this Relationship in

our Objective-C code will be NSSet

(since it is a “fto many” Relationship).

¥ Relationship

Name photos
Destination | Photo &)
Inverse [whoTook -]

Properties | | Transient (¥ Optional

Arranged || Ordered
Plural @ To-Many Relationship

Count Optional @ [Minimum
Unlimited @ (] Maximum
Delete Rule | Nullify : |

Advanced |_| Index in Spotlight
| | Store in External Record File

¥ User Info

Value

o

¥ Versioning

Hash Modifier | Version Hash Modifier

Renaming ID | Renaming Identifier

¥ Relationship Sync

Synchronization | Enabled i)

|| Identity Property
|| Exclude From Change Alert

00>

) Outline Style

ev

Add Entity

@
v

Add Attribute Editor Style

Stanford CS193p

Core Data

® There are lots of other things you can do
But we are going to focus on creating Entities, Attributes and Relationships.

@ So how do you access all of this stuff in your code?

® You need an NSManagedObjectContext
It is the hub around which all Core Data activity turns.

@ How do I get one?
There are two ways ...
1. Create a UIManagedDocument and ask for its managedObjectContext (a @property).
2. Click the "Use Core Data” button when you create a project.
(then your AppDelegate will have a managedObjectContext @property).
We'e going to focus on doing the first one.

UIManagedDocument

@ UIManagedDocument
It inherits from UIDocument which provides a lot of mechanism for the management of storage.

If you use UIManagedDocument, you'll be on the fast-track to iCloud support.
Think of a UIManagedDocument as simply a container for your Core Data database.

@ Creating a UIManagedDocument

UIManagedDocument *document = [[UIManagedDocument] initWithFileURL: (URL *x)url];

UIManagedDocument

@ But you must open/create the document to use it
Check to see if it exists: [[NSFileManager defaultManager] fileExistsAtPath:[url pathl]]
If it does, open the document ...
— (void)openWithCompletionHandler: (void (~) (BOOL success))completionHandler;
If it does not, create it using ...
— (void)saveToURL: (NSURL x)url
forSaveOperation: (UIDocumentSaveOperation)operation
competionHandler: (void (~) (BOOL success))completionHandler;

® What is that completionHander?
Just a block of code to execute when the open/save completes.
That's needed because the open/save is asynchronous!
Do not ignore this fact!

UIManagedDocument

@ Example
self.document = [[UIManagedDocument] initWithFileURL: (URL *x)url];
if ([[NSFileManager defaultManager] fileExistsAtPath:[url path]l]) {
[document openWithCompletionHandler:”~(BOOL success) {
if (success) [self documentIsReady];
if (!success) NSLog(@“couldn’t open document at %@"”, url);
Fis
} else {
[document saveToURL:url forSaveOperation:UIDocumentSaveForCreating

completionHandler:”~(BOOL success) {
if (success) [self documentIsReady];
if (!success) NSLog(@“couldn’t create document at %@”, url);
£
¥
// cant do anything with the document yet (do it in documentIsReady).

UIManagedDocument

@ Once document is open/created, you can start using it

But you might want to check its documentState when you do ...
— (void)documentIsReady

{
if (self.document.documentState == UIDocumentStateNormal) A
NSManagedObjectContext *context = self.document.managedObjectContext;
// do something with the Core Data context
}
s

® Other documentStates

UIDocumentStateClosed (not opened or file does not exist yet)
UIDocumentStateSavingError (success will be NO)
UIDocumentStateEditingDisabled (temporarily unless failed to revert to saved)
UIDocumentStateInConflict (e.g., because some other device changed it via iCloud)

@ The documentState is often “observed”
So its about time we talked about using NSNotifications to observe other objects ...

NSNotification

@ NSNotificationCenter
Get the default notification center via [NSNotificationCenter defaultCenter]
Then send it the following message if you want to observe another object:
— (void)addObserver: (id)observer // you (the object to get notified)
selector: (SEL)methodToSendIfSomethingHappens
name: (NSString *)name // what youre observing (a constant somewhere)
object: (id)sender; // whose changes youTe interested in (nil is anyone’)

@ You will then be notified when the named event happens
— (void)methodToSendIfSomethingHappens: (NSNotification *)notification
{
notification.name // the name passed above
notification.object // the object sending you the notification
notification.userInfo // notification-specific information about what happened

NSNotification

@ Example

NSNotificationCenter xcenter = [NSNotificationCenter defaultCenter];

Watching for changes in a documents state ...
[center addObserver:self

selector:@selector(documentChanged:)
name:UIDocumentStateChangedNotification
object:self.document];

Dont forget to remove yourself when youre done watching.

[center removeObserver:self];

or

[center removeObserver:self name:UIDocumentStateChangedNotification object:self.document];
Failure to remove yourself can sometimes result in crashers.

This is because the NSNotificationCenter keeps an “unsafe unretained” pointer to you.

NSNotification

@ Another Example
Watching for changes in a CoreData database (made via a given NSManagedObjectContext) ..
— (void)viewDidAppear: (BOOL)animated

f
[super viewDidAppear:animated];
[center addObserver:self
selector:@selector(contextChanged:)
name:NSManagedObjectContextObjectsDidChangeNotification
object:self.document.managedObjectContext];
s
— (void)viewWillDisappear: (BOOL)animated
{
[center removeObserver:self
name:NSManagedObjectContextObjectsDidChangeNotification
object:self.document.managedObjectContext];
[super viewWillDisappear:animated];
s

Theres also an NSManagedObjectContextDidSaveNotification.

NSNotification

@ NSManagedObjectContextObjectsDidChangeNotification

or NSManagedObjectContextDidSaveNotification
— (void)contextChanged: (NSNotification *)notification

{
The notification.userInfo object is an NSDictionary with the following keys:
NSInsertedObjectsKey // an array of objects which were inserted
NSUpdatedObjectsKey // an array of objects whose attributes changed
NSDeletedObjectsKey // an array of objects which were deleted

s

@ Other things fo observe
Look in the documentation for various classes in iOS.
They will document any notifications they will send out.
You can post your own notifications too (see NSNotificationCenter documentation).
Dont abuse this mechanism!
Dont use it to essentially get “global variables” in your application.

UIManagedDocument

@ Okay, back to UIManagedDocument ...

@ Saving a document (like creating or opening) is also asynchronous
Documents are auto-saved, but you can explicitly save as well.
You use the same method as when creating, but with a different “save operation.”’
[self.document saveToURL:self.document.fileURL
forSaveOperation:UIDocumentSaveForOverwriting

completionHandler:”~(BOOL success) {
if (!success) NSLog(@“failed to save document %@”, self.document.localizedName);

H;
// the document is not saved at this point in the code (only once the block above executes)

Note the two UIManagedDocument properties used above:
@property (nonatomic, strong) NSURL xfileURL; // specified originally in initWithFileURL:

@property (readonly) NSString xlocalizedName; // only valid once associated with a file

UIManagedDocument

@ Closing a document is also asynchronous
The document will be closed if there are no strong pointers left to the UIManagedDocument.
But you can close it explicitly as well.
[self.document closeWithCompletionHandler:”~(BOOL success) A
if (!success) NSLog(@“failed to close document %@"”, self.document.localizedName);
bk

// the document is not closed at this point in the code (only once the block above executes)

UIManagedDocument

@ Multiple instances of UIManagedDocument on the same document
This is perfectly legal, but understand that they will not share an NSManagedObjectContext.
Thus, changes in one will not automatically be reflected in the other.

You'll have to refetch in other UIManagedDocuments after you make a change in one.

Conflicting changes in two different UIManagedDocuments would have to be resolved by you!
Its exceedingly rare to have two “writing” instances of UIManagedDocument on the same file.
But a single writer and multiple readers? Not so rare. Just need fto know when to refetch.

For your homework, we recommend not doing this

(i.e. we recommend only having one UIManagedDocument instance per actual document).
This will require you to have a bit of global API, but we'll forgive it this time :).
Hint #1 on the homework assignment will suggest an API to do this.

Core Data

@ Okay, we have an NSManagedObjectContext, now what?

We grabbed it from an open UIManagedDocuments managedObjectContext @property.
Now we use it to insert/delete objects in the database and query for objects in the database.

@ Inserting objects into the database
NSManagedObject *photo =

[INSEntityDescription insertNewObjectForEntityForName:@“Photo”
inManagedObjectContext: (NSManagedObjectContext *x)context];

Note that this NSEntityDescription class method returns an NSManagedObject instance.
All objects in the database are represented by NSManagedObjects or subclasses thereof.
An instance of NSManagedObject is a manifestation of an Entity in our Core Data model

(the model that we just graphically built in Xcode)
All the Attributes of a newly-inserted object will be nil

(unless you specify a default value in Xcode)

Core Data

@ How to access Attributes in an NSManagedObject instance

D

D

You can access them using the following two NSKeyValueObserving protocol methods ...

— (id)valueForKey: (NSString *)key;

— (void)setValue: (id)value forKey: (NSString x)key;

You can also use valueForKeyPath:/setValue: forKeyPath: and it will follow your relationships!

The key is an Attribute name in your data mapping

For example, @“thumbnailURL”

The value is whatever is stored (or to be stored) in the database
It'll be nil if nothing has been stored yet (unless Attribute has a default value in Xcode).

Note that all values are objects (numbers and booleans are NSNumber objects).

"To-many” mapped relationships are NSSet objects (or NSOrderedSet if ordered).

Non-"to-many” relationships are NSManagedObjects.

Binary data values are NSData objects.

Date values are NSDate objects.

Core Data

@ Changes (writes) only happen in memory, until you save

Yes, UIManagedDocument auto-saves.
But explicitly saving when a batch of changes is made is good practice.

Core Data

@ But calling valueForKey:/setValueForKey: is pretty messy

Theres no type-checking.
And you have a lot of literal strings in your code (e.g. @“thumbnailURL")

@ What we really want is to set/get using @propertys!

@ No problem ... we just create a subclass of NSManagedObject
The subclass will have @propertys for each attribute in the database.
We name our subclass the same name as the Entity it matches (not strictly required, but do it).
And, as you might imagine, we can get Xcode o generate both the header file @property entries,
and the corresponding implementation code (which is not @synthesize, so watch out!).

Ntonr
-t

-
gk, e
Qur

I QrsDa%mgls g i0S stice l

Type

N

. ENTITIES v Entity I
E Photo Name | Multiple Values
E Photographer Class | NSManagedObject
FETCH REQUESTS || Abstract Entity
CONFIGURATIONS Parent Entity [No Parent Entity :] |
(@ Default Indexes
| -
[Photo] ¥ User Info
oq e ¥ Attributes Val |
SeleCf bO'I'h En'l'l'l'les. photoURL =
’ . subtitle ' Photographer |
WerTe going to have Xcode |thumbnailData | ¥ Attributes
. thumbnailURL | {name |
generafte NSManagedObject title ¥ Relationships thlacm
No Iss uploadDate ————3 photos) V¥ Versioning]
SUbClasses For *hem For us. ¥ Reiationstips Hash Modifier | Version Hash Modifier
\whoTook JEe—
Renaming ID | Renaming Identifier

¥ Entity Sync |
Synchronization | Enabled ™
Data Class v |

|| Exclude From Change Alert
Parent | No Parent Relationship 2|

(+] (+ Stanford CS193p

CNON(S | Outline Style Add Entity Add Attribute Editor Style

® Xcode File Edit View Navigate Product Window Help

Canvas

Add Entity
Add Fetch Request

No Issues

00>

ENTITIES
Add Configuration Name | Multiple Values
E Phot: Add Attribute Class | NSManagedObject
FETCH Rl Add Fetched Property || Abstract Entity
CONFIGU Add Relationship ASK Xcode 1o genera+e arent Entity | No Parent Entity 3
(CIEE! Create NSManagedObject Subclass... NSManagedObject Inciexes
Add Model Version... subclasses for our
Import... o e
Entifies. ==
L Photo i ¥ User Info
¥ Attributes Value
photoURL
subtitle | Photographer |
“thumbnaiIData » ¥ Attributes
thumbnailURL | {name |
title ¥ Relationships +i=|
uploadDate 3 photos) ¥ Versioning
¥ Relationships Hash Modifier | Version Hash Modifier
\whoTook e
Renaming ID | Renaming Identifier
¥ Entity Sync |
Synchronization | Enabled ™
Data Class v
|| Exclude From Change Alert
Parent [No Parent Relationship :]
=N = | G - Stanford CS193p
Outline Style Add Entity Add Attribute Editor Style y

@ @ ICoreDa,taExamgIe » i0S Device | D Xcode
— - 3 m ‘llll -
I : = 4 > || 55 = m| || ==+ || (] CoreDataExample s] (Q
c Photo [P > NS TR | COEAppDelegate.n Name [Multle Values
. gm A i ‘
E Photograr -@a All My Files | CoreDataEx...le.xcodeproj m/ CDEAppDelegate.m Class | NSManagedObject
p— > h| CDEViewController.h O] Ab —
FETCH REQUESSSES alt » m| CDEViewController.m _ stract n.ty -
CONFIGURAT [3 Documents ~ .| CoreDataExample-Info.plist Parent Entity | No Parent Entity 'JI
@ Default o Downloads h CoreDataEx...le-Prefix.pch Indexes
o /| CoreDataEx...cdatamodeld
A Applications (] en.lproj >
|| Developer m main.m
| -
SHARED
, v Usernfo
Pick where you want your Key ~ Value
new classes fto be stored
(default is often one directory a—
. ¥ Versioning
level higher, so watch out). ; : —
g /) Options Qgse scalar properties for primitive data types Hash Modifier | Version Hash Modifier
el = eDataExample :] Renaming ID | Renaming Identifier
Targets ¥ Entity Sync
Synchronization | Enabled

This will make your @propertys be scalars
(e.g- int instead of NSNumber *) where possible.
Be careful if one of your Attributes is an NSDate,
you'll end up with an NSTimeInterval @property.

| New Folder |

ov ev Stanford CS193p

®©O®)| OutlineStyle Add Entity Add Attribute Editor Style y

@ @ l CoreData%mgls g |OS Dewce |

5 akpoints cditor
— A o - e

A

e W & = =14 un

CoreDataExample ENTITIES

ltarget iOS SDK 5.0 —
E Photo
v D CoreDataExample S —
|h| Photographer.h E Photographer
@ Photographer.m FETCH REQUESTS
|h| Photo.h
im| Photo.m CONFIGURATIONS
[| MainStoryboard_iPhone. d | (@ Default

E] MainStoryboard_iPad.storyboa
@CDEViewController.h ore are - A s - . ore aeherated
@ CDEViewController.m

[l CoreDataExample.xcdatamodeld DNotTOo ANd Photoaranhe

» || Supporting Files

» [Frameworks ¥ Attributes
» [] Products photoURL
subtitle " Photographer |
thumbnailData ¥ Attributes
thumbnailURL name
title ¥ Relationships
uploadDate —3 photos

¥ Relationships
whoTook EE—

== ©. (+]} S’ranfrd 193,p

+ 0O L CQ) Outline Style Add Entity Add Attribute Editor Style

M) [CoreDatatxample) i0SDevice | [=

_ CoreDataExample
¥ 123 1 target, iOS SDK 5.0

v | |CoreDataExample
[Photographer.h
m| Photographer.m
|h| Photo.h
@ Photo.m

MainStoryboard_iPad.storyboard
|h| CDEViewController.h
Im| CDEViewController.m
|| CoreDataExample.xcdatamodeld
» [| Supporting Files
» [Frameworks
» [_|Products

[E| MainStoryboard_iPhone.storyboard

+ | OB @A (®

Xcode

= [

= [el=

//
//
//
//
//
//
//

Photographer.h
CoreDataExample

Created by CS193p Instructor.
Copyright (c) 2011 Stanford University. All rights reserved.

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

See? @propertys for all of Photographers

@class Photo;

Attributes and Relationships.

@interface Photographer : NSManagedObject

@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSSet xphotos;
@end

@interface Photographer (CoreDataGeneratedAccessors)

(void)addPhotosObject: (Photo *)value;
(void) removePhotosObject: (Photc =x)value;
(void)addPhotos: (NSSet x)values

(void) removePhotos: (NSSet x)val es;

These convenience methods are for putfing Photo
objects in and out of the photos Attribute.

@end

But you can also just make a mutableCopy of the

photos @property (creating an NSMutableSet), modify it,
then put it back by setfing the photos @property.

Stanford CS193p
Fall 2011

M) [CoreDatatxample) i0SDevice | [=

_ CoreDataExample
¥ 123 1 target, iOS SDK 5.0

v || CoreDataExample
|h| Photographer.h

im| Photographer.m

[§ Photo.h
m| Photo.m

[E| MainStoryboard_iPhone.storyboard

MainStoryboard_iPad.storyboard
|h| CDEViewController.h
Im| CDEViewController.m
|| CoreDataExample.xcdatamodeld
» [| Supporting Files
» [Frameworks
» [_|Products

+ | OB @A (®

//

// Photo.h
// CoreDataExample

//

Xcode

// Created by CS193p Instructor.
// Copyright (c) 2011 Stanford University. All rights reserved.

//

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@interface Photo : NSManagedObject

@property
@property
@property
@property
@property
@property
@property

@end

(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,

retain)
retain)
retain)
retain)
retain)
retain)
retain)

NSString = photoURL;
NSString * subtitle;
NSData * thumbnailData;
NSString %= thumbnailURL;
NSString * title;

NSDate % uploadDate;
NSManagedObject xwhoTook;

= [l =R (E

Oops, Xcode did not generate the proper

class here for the whoTook @property.
It should have been a Photo .

Stanford CS193p
Fall 2011

® Xcode File Edit View Navigate Product Window Help O DO 4 = A 4 Monl07PM Q F3

Canvas > Xcode =

Add Entity
enTimies Add Fetch Request v Entity
Add Conﬁguration : Name | Multiple Values
Ef g Add Attribute | Class | NSManagedObject
FETCH Rl Add Fetched Property | || Abstract Entity
i i ' Parent Entity | No Parent Enti :
conricy Add Relationship | ty | ty J
(CIEE! Create NSManagedObject Subclass... Inciexes
Add Model Version...
Import...
|-
L Photo | ¥ User Info
¥ Attributes Value
photoURL
subtitle | Photographer |
“thumbnaiIData | ¥ Attributes
thumbnailURL {name |
title ¥ Relationships +i= —
¥ Relatonships Hash Modifier | Version Hash Modifier
\whoTook e
Renaming ID | Renaming Identifier
¥ Entity Sync
Synchronization | Enabled ™™
Data Class v |

Easy fix. Just generate the classes again.

. 0 LAy |_| Exclude From Change Alert |
Clearly there is an order of generation™ problem Parent [No Parent Relationship ¢ |

(Photo was generated before Photographer was).

=l = | 0. ev = Stanford CS193p

CNON(S)| Outline Style Add Entity Add Attribute Editor Style y

@ @ | CoreDataExamgle Z |OS Dewce | = Xcode

i »-_\-w

v _T__ ° ; ‘i’ nn E |
1 target, iOS SDK 5.0 be replaced:
v E:]CoreDataExample _— —— el J -h
otog = 2.m
|| Photographer.h ALl B Allmy /Users/CS193p/2011-2012 Fall/Lectures/13/
Photographer.m FETCH REQUm CoreDataExample/CoreDataExample/Photographer.h ler.h
Photo.h /Users/CS193p/2011-2012 Fall/Lectures/13/ ler.m
Photo.m CONFIGURAT| [} Docun g:“:oa‘a'i:a’“"""cmeDmE"amp'e/ e-Info.plist
J otographer.m .
[EJ MainStoryboard_iPhone.storyboard | @ Default () Downl JUsers/CS193p/2011-2012 Fall/Lectures/13/ j res.ph
E] MainStoryboard_iPad.storyboard X CoreDataExample/CoreDataExample /Photo.h atamodeld
IE CDEViewController.h rﬂq Applic fUsers/CS193p/2011-2012 Fall/Lectures/13/ [
CDEViewController.m ﬁ Develc CoreDataExample/CoreDataExample /Photo.m
[l CoreDataExample.xcdatamodeld m—r
» || Supporting Files SHARED Bepiace] | |
» [Frameworks DEVICES SR
> [] Products m| Photographer.m
Photographer |
ttributes
- ~ elationships
Click Replace to replace the old s ,

Options | | Use scalar properties for primitive data types
Group | [CoreDataExample s

Targets | () /Ay CoreDataxample You should regenerate these
NSManagedObject subclasses any
time You change Your schema.

Photo. [mh]/Photographer. [mh]

with the new one(s).

[Cancel] [Create]

[New Folder]

= B8 O. Q- ionfor= IEW

+ OB ® | Outlinestyle Add Entity Add Attribute | ' 'Editof Style

M) [CoreDatatxample) i0SDevice | [=

_ CoreDataExample
¥ 123 1 target, iOS SDK 5.0

v || CoreDataExample
MainStoryboard_iPhone.storyboard
MainStoryboard_iPad.storyboard
|h| CDEViewController.h
Euj CDEViewController.m
|| CoreDataExample.xcdatamodeld
IE Photographer.h
im| Photographer.m
m| Photo.m
» [| Supporting Files

» [Frameworks
» [_|Products

L'I'.@@D’@){

//

// Photo.h
// CoreDataExample

//

Xcode

// Created by CS193p Instructor.
// Copyright (c) 2011 Stanford University. All rights reserved.

//

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class Photographer;

@interface Photo : NSManagedObject

@property
@property
@property
@property
@property
@property
@property

@end

(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,

retain)
retain)
retain)
retain)
retain)
retain)
retain)

NSString = photoURL;
NSString * subtitle;
NSData * thumbnailData;
NSString %= thumbnailURL;
NSString * title;
NSDate % uploadDate;
Photographer xwhoTook;

Now this Is

correct.

= [el=

=R (E

Stanford CS193p
Fall 2011

————

ET L _'_ amm 4 = n | 7\‘ LCoreDatatxampie |
v IS CoreDataExample //
1 1 target, iOS SDK 5.0 // Photo.m / . .
VmCoreDataExample // CoreDataExample NOW Ie'I'S lOOk 01- phO‘l’O.m (fhe Implemen'l'd'l'lOn).
MainStoryboard_iPhone.storyboard ; ; ¢ ted by CS
=| MainS d_iPad. d reated Dy ;
S // Copyright (g p11 Stanford University. All rights reserved.

|h| CDEViewController.h
E\j CDEViewController.m
@ CoreDataExample.xcdatamodeld #impor
IE Photographer.h
im| Photographer.m

R einplenentation Photo What the hecKk is @dynamic?!

D gt
u H : .
» (] Products edynanic thumbnaiibata; It says "I do not implement the setter or getter for this

Gdynanic titte; property, but send me the message anyway and I'll use the
Objective-C runtime fo figure out what to do-’

"Photographer.h"

@dynamic uploadDate;
@dynamic whoTook;

@end

There is a mechanism in the Objective-C runtime to “frap“
a message sent to you that you dont implement.

NSManagedObject does this and calls valueForKey: or
setValueForKey:. Pretty cool.

Stanford CS193p
Fall 2011

+ | 0OEOD® |

Core Data

® So how do I access my Entities’ Attributes with dot notation?
Photo *xphoto = [NSEntityDescription insertNewObjectForEntityForName:@“Photo” inManagedObj...];
NSString *xmyThumbnail = photo.thumbnailURL;
photo.thumbnailData = [FlickrFetcher urlForPhoto:photoDictionary format:FlickrPhotoFormat...];
photo.whoTook = ..; // a Photographer object we created or got by querying
photo.whoTook.name = @“CS193p Instructor”; // yes, multiple dots will follow relationships

Core Data

@ What if I want to add code to my NSManagedObject subclass?

Hmm, thats a problem.
Because you might want to modify your schema and re-generate the subclasses!
And itd be really cool to be able to add code (very object-oriented).
Especially code to create an object and set it up properly (and also tear one down, it turns out).
Or maybe to derive new @propertys based on ones in the database
(e.g. a UIImage based on a URL in the database).

Time for an aside about an Objective-C feature called “categories” ...

Categories

@ Categories are an Objective-C syntax for adding to a class ..
Without subclassing it.

Without even having to have access to the code of the class (e.g. its .m).

@ Examples
NSStrings drawAtPoint:withFont: method.
This method is added by UIKit (since its a Ul method) even though NSString is in Foundation.
NSIndexPaths row and section properties (used in UITableView-related code)
are added by UIKit too, even though NSIndexPath is also in Foundation.

@ Syntax
@interface Photo (AddOn)
— (UIImage *)image;
@property (readonly) BOOL isOld;
@end
Categories have their own .h and .m files (usually ClassName+PurposeOfExtension. [mh]).
Categories cannot have instance variables, so no @synthesize allowed in its implementation.

Categories

@ Implementation

@implementation Photo (AddOn)

- (UIImage *)image // image is not an attribute in the database, but photoURL is

{
NSData *ximageData = [NSData dataWithContentsOfURL:self.photoURL];
return [UIImage imageWithData:imageData];

F

-~ (BOOL)is0ld // whether this photo was uploaded more than a day ago

{

return [self.uploadDate timeIntervalSinceNow] < -24*60x60;

}
@end

Other examples ... sometimes we add @propertys to an NSManagedObject subclass via categories
to make accessing BOOL attributes (which are NSNumbers) cleaner.

Or we add @propertys to convert NSDatas to whatever the bits represent.

Any class can have a category added to it, but dont overuse/abuse this mechanism.

Categories

@ Most common category on an NSManagedObject subclass?
Creation
@implementation Photo (Create)
+ (Photo *)photoWithFlickrData: (NSDictionary *)flickrData

inManagedObjectContext: (NSManagedObjectContext *)context
{

Photo *photo = ...; // see if a Photo for that Flickr data is already in the database
if (!'photo) {
photo = [NSEntityDescription insertNewObjectForEntityForName:@“Photo”

inManagedObjectContext:context];
// initialize the photo from the Flickr data

// perhaps even create other database objects (like the Photographer)
}

return photo;

i
@end

E =
CoreDataExam le
¥ B 1 targer, ios SDK 5.0
v [| CoreDataExample
[E] MainStoryboard_iPhone.storyboard
[E| MainStoryboard_iPad.storyboard
|h| CDEViewController.h
Im| CDEViewController.m
h| Photographer.h
Im| Photographer.m
|h| Photo.h
im| Photo.m
» || Supporting Files
» [Frameworks
» | Products

Al

° @ l CoreData%mgls g |OS Dewce | D

T e aey

i __.‘...s_.

-
-

—_—

Xcode

Choose a template for your new file:

ios

Cocoa Touch @ @‘ h
Cand C++ Lo o L o
User Interface

— Core Data Objective-C class UlViewController Objective-C Objective-C protocol

subclass category
pore Resource
e P

Other o

~ | K MacosXx @ﬁx

o 1 Yost'_

wriA Cocoa
Cand C++ Objective-C test

' User Interface case class

Core Data
Resource
Other

e

‘ ﬁh Objective-C category
| Obj-C
’:,; An Objective-C category, with implementation and headel les.
-
| Cancel | . Previous | [LiNexto

Choose New File ... from the File menu,
then pick Objective-C category from the Cocoa Touch section.

- ev

+ | OB @A (®)

Outline Style Add Entity

@ 5tanforli
Add Attribute TAUefifHstyte

e CoreDataExampIe Choose options for your new file:
1 target, iOS SDK 5.0

v [| CoreDataExample

MainStoryboard_iPhone.storyboard

MainStoryboard_iPad.storyboard

|h| CDEViewController.h

Im| CDEViewController.m

(i CoreDataExample.xcdatamodeld
h| Photographer.h

im| Photographer.m

|h| Photo.h
im| Photo.m
» || Supporting Files Category | Flickr
s S oo [Poto
Ph
> ;l Products Category on oto

Cancel | | Previous | [Next |

Enter the name of the category, as well as
the name of the class the categorys methods will be added to.

== Q. @ s tanfor I

+ OB DG | OutlineStyle Add Entity Add Attribute " Algdi@BHstyte

m [; E E !|9§E .] (- | Xcode ' _ \ Z el | [=

No Issues
== HH 2 h : . i we | 4 p | |5 Counterparts Enj Photo+Flickr.m » No Selection W+ W x)
I CoreDataExample // // I
1 target, iOS SDK 5.0 // Photo+Flickr.h // Photo+Flickr.m

v [| CoreDataExample // CoreDataExample // CoreDataExample

MainStoryboard_iPhone.storyboard // //

[E) MainStoryboard_iPad.storyboard // Creatt_ad by CS193p Instructor. . _ // Creatgd by CS193p Instructor. . _

'h| CDEViewController.h // Copyr}ght (c) 2011 Stanford University. // Copyr}ght (c) 2011 Stanford University.

) // All rights reserved. // All rights reserved.

im| CDEViewController.m 77 77

|| CoreDataExample.xcdatamodeld

[i Photo+Flickr.h #import "Photo.h" #import "Photo+Flickr.h"

) Photo+Flickr.m

h| Photographer.h @interface Photo (Flickr) @implementation Photo (Flickr)

im| Photographer.m

IE Photo.h @end @end

im| Photo.m

» [| Supporting Files

» || Frameworks
» [Products

Xcode will create both the .h and the .m for the category.

Remember, you cannot use @synthesize in this .m!

Stanford CS193p
Fall 2011

L'I'.@@D’@){

Deletion

® Deleftion

Deleting objects from the database is easy (sometimes too easy!)
[self.document.managedObjectContext deleteObject:photol;
Make sure that the rest of your objects in the database are in a sensible state after this.

Relationships will be updated for you (if you set Delete Rule for relationship attributes properly).
And dont keep any strong pointers to photo after you delete it!

@ prepareForDeletion

Here is another method we sometimes put in a category of an NSManagedObject subclass ..
@implementation Photo (Deletion)

— (void)prepareForDeletion

{
// we dont need to set our whoTook to nil or anything here (that will happen automatically)
// but if Photographer had, for example, a "number of photos taken” attribute,
// we might adjust it down by one here (e.g. self.whoTook.photoCount—-).

}

@end

Core Data

@ So far you can ...

Create objects in the database with insertNewObjectForEntityForName: inManagedObjectContext:.

Get/set properties with valueForKey:/setValueForKey: or @propertys in a custom subclass.
Delete objects using the NSManagedObjectContext deleteObject: method.

@ One very important thing left to know how to do: QUERY

Basically you need to be able to retrieve objects from the database, not just create new ones
You do this by executing an NSFetchRequest in your NSManagedObjectContext

@ Four important things involved in creating an NSFetchRequest
1. Entity to fetch (required)

2. NSPredicate specifying which of those Entities to fetch (optional, default is all of them)
3. NSSortDescriptors fo specify the order in which fetched objects are returned
4. How many objects to fetch at a time and/or maximum to fetch (optional, all)

Querying

@ Creating an NSFetchRequest
We'll consider each of these lines of code one by one ..
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“Photo”];
request.fetchBatchSize = 20;
request.fetchLimit = 100;
request.sortDescriptors = [NSArray arrayWithObject:sortDescriptor];
request.predicate =" ..;

@ Specifying the kind of Entity we want to fetch
A given fetch returns objects all of the same Entity.
You cant have a fetch that returns some Photos and some Photographers (one or the other).

o Setting fetch sizes/limits
If you created a fetch that would match 1000 objects, the request above faults 20 at a time.
And it would stop fetching after it had fetched 100 of the 1000.

Querying

@ NSSortDescriptor
When we execute a fetch request, its going to return an NSArray of NSManagedObjects.
NSArrays are “ordered,” so we have to specify the order when we fetch.

We do that by giving the fetch request a list of “sort descriptors” that describe what to sort by.
NSSortDescriptor xsortDescriptor =

[NSSortDescriptor sortDescriptorWithKey:@“thumbnailURL”
ascending:YES

selector:@selector(localizedCaseInsensitiveCompare:)];
Theres another version with no selector: argument (default is the method compare:).

The selector: argument is just a method (conceptually) sent to each object to compare it to others.
Some of these "methods” might be smart (i.e. they can happen on the database side).

We give a list of these to the NSFetchRequest because sometimes we want to sort first by one
key (e.g. last name), then, within that sort, sort by another (e.g. first name).

Querying

@ NSPredicate
This is the guts of how we specify exactly which objects we want from the database.

@ Predicate formats
Creating one looks a lot like creating an NSString, but the contents have semantic meaning.
NSString *serverName = @“flickr-5";
NSPredicate *predicate =
[NSPredicate predicateWithFormat:@“thumbnailURL contains %@"”, serverName];

@ Examples
@‘uniqueld = %@”, [flickrInfo objectForKey:@“id”] // unique a photo in the database
@“name contains[c] %@”, (NSString *) // matches name case insensitively
@‘viewed > %@”, (NSDate x) // viewed is a Date attribute in the data mapping
@“whoTook.name = %@”, (NSString %) // Photo search (by photographers name)
@“any photos.title contains %@”, (NSString *) // Photographer search (not a Photo search)
Many more options. Look at the class documentation for NSPredicate.

Querying

@ NSCompoundPredicate
You can use AND and OR inside a predicate string, e.g. @“(name = %@) OR (title = %Q@)"
Or you can combine NSPredicate objects with special NSCompoundPredicates.
NSArray xarray = [NSArray arrayWithObjects:predicatel, predicate2, nill];
NSPredicate xpredicate = [NSCompoundPredicate andPredicateWithSubpredicates:arrayl;
This predicate is “predicatel AND predicate2”.
"Or” predicate also available, of course.

Querying

@ Putting it all together

Lets say we want to query for all Photographers ...

NSFetchRequest xrequest = [NSFetchRequest fetchRequestWithEntityName:@“Photographer”];

.. who have taken a photo in the last 24 hours ..

NSDate xyesterday = [NSDate dateWithTimeIntervalSinceNow:-24x60%x60];

request.predicate = [NSPredicate predicateWithFormat:@“any photos.uploadDate > %@"”, yesterdayl;
.. sorted by the Photographers name ...

NSSortDescriptor xsortByName = [NSSortDescriptor sortDescriptorWithKey:@“name” ascending:YES];
request.sortDescriptors = [NSArray arrayWithObject:sortByName];

@ Executing the fetch

NSManagedObjectContext *moc = self.document.managedObjectContext;
NSError xerror;

NSArray xphotographers = [moc executeFetchRequest:request error:&error];

Returns nil if there is an error (check the NSError for details).

Returns an empty array (not nil) if there are no matches in the database.

Returns an array of NSManagedObjects (or subclasses thereof) if there were any matches.
You can pass NULL for error: if you dont care why it fails.

Querying

@ Faulfing

The above fetch does not necessarily fetch any actual data.
It could be an array of “as yet unfaulted” objects, waiting for you to access their attributes.
Core Data is very smart about “faulting” the data in as it is actually accessed.
For example, if you did something like this ...
for (Photographer xphotographer in photographers) A{

NSLog(@“fetched photographer %@”, photographer);
B
You may or may not see the names of the photographers in the output

(you might just see “unfaulted object”, depending on whether it prefetched them)

But if you did this ...
for (Photographer xphotographer in photographers) {

NSLog(@“fetched photographer named %@”, photographer.name);
s

.. then you would definitely fault all the Photographers in from the database.

Core Data

@ There is so much more (that we dont have time to talk about)!
Optimistic locking (deleteConflictsForObject:)

Rolling back unsaved changes
Undo/Redo

Staleness (how long after a fetch until a refetch of an object is required?)

Coming Up

@ Thursday

More Core Data

@ Friday Section
Mike Ghaffary
Director of Business Development at Yelp!
Also co-founder of BarMax, the most expensive iPhone/iPad app on the AppStore
Topic: Building Apps that People Want
Understanding Market Opportunity
Building a Prototype
Financing a Company or Team
Getting User Feedback
Distribution through the AppStore

Q 0 © 0 0

