CS193P - Lecture 19

iPhone Application Development

OpenGL ES

Announcements

- Final projects due in 7 days
 - Tuesday, March 16th 11:59 pm
 - Submit:
 - Code
 - Power-point/Keynote slides
 - ReadMe file
- Final project demos
 - March 18, from 12:15 3:15 pm in Hewlett 201
 - 2 minute presentation, followed by demo-fair
 - Rapid-fire!!
 - Time limit strictly enforced
 - Let us know if you do not want to be recorded

- OpenGL Overview
- Coordinate Systems and Transformations
- Drawing Geometry
- Using Textures
- Other Details

• Software interface for graphics hardware

- Software interface for graphics hardware
- Quickly render 2D or 3D graphics

- Software interface for graphics hardware
- Quickly render 2D or 3D graphics
- Hardware implementation agnostic

- Software interface for graphics hardware
- Quickly render 2D or 3D graphics
- Hardware implementation agnostic

- Software interface for graphics hardware
- Quickly render 2D or 3D graphics
- Hardware implementation agnostic
- OpenGL ES is a subset of OpenGL
 - GLUT and GLU are not available on the iPhone

OpenGL is a state machine

OpenGL is a state machine

Change Machine State

```
glEnable(); glDisable(); glMatrixMode(); glBindFramebuffer0ES();
glViewport(); glVertexPointer(); glColorPointer(); glTranslatef() ...
```

Issue Drawing Commands

```
glDrawArrays(); glDrawElements(); ...
```

Read Back State, Drawing Results

```
glGetBooleanv(); glGetFloatv(); glReadPixels(); ...
```

Coordinate Systems

The Coordinate System Onion

Window Coordinates

Normalized Device Coordinates

Normalized Device Coordinates

Clip Coordinates

ILLUSTRATION NOT FOUND

Eye Coordinates

Eye Coordinates

World Coordinates

World Coordinates

Object Coordinates

DemoTransformations

Transformations Cheat Sheet

```
glMatrixMode(GL_PROJECTION);
glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glOrthof(left, right, bottom, top, zNear, zFar);
glFrustumf(left, right, bottom, top, zNear, zFar);

glRotatef(degrees, x, y, z);
glTranslatef(x, y, z);
glScalef(x, y, z);
glMultMatrixf(matrix);

glPushMatrix();
glPopMatrix();
```

Drawing Geometry

Vertices

- OpenGL ES draws triangles, lines, and points
- Object space vertices mapped into window space
- Rasterize the shapes to get pixels

Colors

- Each vertex can have a color associated
- RGBA
 - Alpha usually means opacity
- Lines and triangles interpolate colors

- Vertices are passed to OpenGL ES in arrays
- Drawing modes determine how vertices are interpreted to produce shapes
- Vertex order matters

- Vertices are passed to OpenGL ES in arrays
- Drawing modes determine how vertices are interpreted to produce shapes
- Vertex order matters

GL_TRIANGLES

- Vertices are passed to OpenGL ES in arrays
- Drawing modes determine how vertices are interpreted to produce shapes
- Vertex order matters

GL_TRIANGLES

2 4

GL_TRIANGLE_FAN

- Vertices are passed to OpenGL ES in arrays
- Drawing modes determine how vertices are interpreted to produce shapes
- Vertex order matters

GL_TRIANGLES

(1) (2) (4) (4) (5) (5)

GL_TRIANGLE_FAN

GL_TRIANGLE_STRIP

Drawing a Tetrahedron

• Use a triangle strip

Demo Geometry

Geometry Cheat Sheet

```
GLfloat vertexArray[] = {
   x1, y1, z1,
   x2,y2,z2,
   x3,y3,z3, ... };
GLubyte colorArray[] = {
   r1,g1,b1,a1,
   r2,g2,b2,a2,
   r3,q3,b3,a3, ... };
qlVertexPointer(dimOfVertices, GL FLOAT, arrayOffset, vertexArray);
glEnableClientState(GL VERTEX ARRAY);
glColorPointer(4, GL_UNSIGNED_BYTE, arrayOffset, colorArray);
glEnableClientState(GL COLOR ARRAY);
glDrawArrays(GL TRIANGLE STRIP, arrayOffset, numberOfVertices);
  // or GL TRIANGLE FAN, GL TRIANGLES
qlDisableClientState(GL VERTEX ARRAY);
qlDisableClientState(GL COLOR ARRAY);
```

Using Textures

Texture Mapping

- Color pixels according to an image in memory
- Almost always 2D (3D textures are possible though)
- Vertices are given texture coordinates (u,v)

- Swapping textures often is inefficient
- Instead make one giant shared texture

- Swapping textures often is inefficient
- Instead make one giant shared texture

- Swapping textures often is inefficient
- Instead make one giant shared texture

• Vertices may not have consistent (u,v) coordinates

- Swapping textures often is inefficient
- Instead make one giant shared texture

Vertices may not have consistent (u,v) coordinates A_FRONT

DemoTextures

Texture Cheat Sheet

```
bash$ export PATH=${PATH}:/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/
bash$ texturetool -f PVR -e PVRTC image.png -o image.pvrtc
bash$ # image.png must be square with power of side length -- e.g. 64, 256, 1024
#import "PVRTexture.h"
// From Apple's PVRTextureLoader Example Project
NSString * path = [[NSBundle mainBundle] pathForResource: @"image" ofType:@"pvrtc"];
PVRTexture * texture = [[PVRTexture alloc] initWithContentsOfFile: path];
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR);
glTexParameterf(GL TEXTURE 2D, GL TEXTURE MAX ANISOTROPY EXT, 1.0f);
glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP TO EDGE);
glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL CLAMP TO EDGE);
glEnable(GL TEXTURE 2D);
glBindTexture(GL TEXTURE 2D, texture.name);
GLFloat textureCoordArray[] = {
    u1, v1,
    u2,v2,
    u3,v3, ... };
glTexCoordPointer(2, GL FLOAT, arrayOffset, textureCoordArray);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDrawArrays(GL TRIANGLE STRIP, arrayOffset, numberOfVertices);
glDisableClientState(GL TEXTURE COORD ARRAY);
```

Other Details

OpenGL ES 1.1 vs. ES 2.0

- This lecture described OpenGL ES1.1
- ES 2.0 is drastically different
 - Uses shader based approach
 - More flexible, harder to wrap your head around
- ES 2.0 not available in iPhones before 3GS

Want to know more?

- Apple OpenGL Programming Guide
- OpenGL Redbook
- The Internets
- Stanford CS 148, 248
- Topics of interest
 - Framebuffers
 - Depth Testing
 - Backface Culling
 - Animation (not inherently part of OpenGL)
 - Transparency and Blending
 - Lighting and Shading

Monday, March 15, 2010

Questions?