CS193P - Lecture 19

iPhone Application Development

OpenGL ES

Monday, March 15, 2010

Announcements

* Final projects due in 7 days
= Tuesday, March 16th 11:59 pm

= Submit:
= Code

- Power-point/Keynote slides
- ReadMe file

* Final project demos
- March 18, from 12:15 - 3:15 pm in Hewlett 201

- 2 minute presentation, followed by demo-fair
- Rapid-fire!!
= Time limit strictly enforced

- Let us know if you do not want to be recorded

Monday, March 15, 2010

Today'’s Topics

OpenGL on Desktop

A

Novice > Advanced

\ 4

OpenGL ES on iPhone

Monday, March 15, 2010

Today'’s Topics

OpenGL on Desktop

A

OpenGL Tutorials
on the Internet

/

Novice < > > Advanced

\ 4

OpenGL ES on iPhone

Monday, March 15, 2010

Today'’s Topics

OpenGL on Desktop

A

OpenGL Tutorials
on the Internet

/

\ < > Advanced

This Lecture

. 7

4

OpenGL ES on iPhone

Monday, March 15, 2010

Today'’s Topics

* OpenGL Overview

* Coordinate Systems and Transformations
* Drawing Geometry

 Using Textures

* Other Details

Monday, March 15, 2010

OpenGL Overview

Monday, March 15, 2010

OpenGL Overview

Monday, March 15, 2010

OpenGL Overview

» Software interface for graphics hardware

Monday, March 15, 2010

OpenGL Overview

» Software interface for graphics hardware
* Quickly render 2D or 3D graphics

Monday, March 15, 2010

OpenGL Overview

» Software interface for graphics hardware
* Quickly render 2D or 3D graphics
* Hardware implementation agnostic

Monday, March 15, 2010

OpenGL Overview

» Software interface for graphics hardware
* Quickly render 2D or 3D graphics
* Hardware implementation agnostic

Monday, March 15, 2010

OpenGL Overview

» Software interface for graphics hardware
* Quickly render 2D or 3D graphics
* Hardware implementation agnostic

* OpenGL ES is a subset of OpenGL
« GLUT and GLU are not available on the iPhone

Monday, March 15, 2010

OpenGlL is a state machine

Monday, March 15, 2010

OpenGlL is a state machine

» Change Machine State

; ();
(); ();

* |ssue Drawing Commands

(); (); ...
* Read Back State, Drawing Results

OF ();

Monday, March 15, 2010

Coordinate Systems

Monday, March 15, 2010

The Coordinate System Onion

Monday, March 15, 2010 10

Window Coordinates

Monday, March 15, 2010

Normalized Device Coordinates

e

Monday, March 15, 2010

Normalized Device Coordinates

A

Monday, March 15, 2010

Clip Coordinates

ILLUSTRATION

NOT FOUND

Eye Coordinates

[

Monday, March 15, 2010

Eye Coordinates

(left, top, -zNear)

—

(aeright, a<bottom, -zFar)

Monday, March 15, 2010

World Coordinates

Monday, March 15, 2010

World Coordinates

Monday, March 15, 2010

Object Coordinates

Monday, March 15, 2010

Demo

Transformations

Monday, March 15, 2010

Transformations Cheat Sheet

(GL_PROJECTION);
(GL_MODELVIEW);

();

(left, right, bottom, top, zNear, zFar);
(left, right, bottom, top, zNear, zFar);

(degrees, x, vy, 2z);
(X, y, 2);

(x, y, 2);
(matrix);

();
();

Monday, March 15, 2010

Drawing Geometry

Monday, March 15, 2010

Vertices

* OpenGL ES draws triangles, lines, and points

* Object space vertices mapped into window space
* Rasterize the shapes to get pixels

Monday, March 15, 2010

Colors

* Each vertex can have a color associated

* RGBA
« Alpha usually means opacity

* Lines and triangles interpolate colors

Monday, March 15, 2010

Drawing Modes

* Vertices are passed to OpenGL ES in arrays

* Drawing modes determine how vertices are interpreted to
produce shapes

* Vertex order matters

Monday, March 15, 2010

Drawing Modes

* Vertices are passed to OpenGL ES in arrays

* Drawing modes determine how vertices are interpreted to
produce shapes

* Vertex order matters

GL_TRIANGLES

0 ,/1@

U @6

Monday, March 15, 2010

Drawing Modes

* Vertices are passed to OpenGL ES in arrays

* Drawing modes determine how vertices are interpreted to
produce shapes

* Vertex order matters

GL_TRIANGLES GL_TRIANGLE_FAN

Monday, March 15, 2010

Drawing Modes

* Vertices are passed to OpenGL ES in arrays

* Drawing modes determine how vertices are interpreted to
produce shapes

* Vertex order matters

GL_TRIANGLES GL_TRIANGLE_FAN GL_TRIANGLE_STRIP

Monday, March 15, 2010

Drawing a Tetrahedron

* Use a triangle strip

TETRA_TOP

TETRA_RIGHT
TETRA_LEFT

TETRA_FRONT

Monday, March 15, 2010

Drawing a Tetrahedron

* Use a triangle strip

0

TETRA_TOP

TETRA_RIGHT
TETRA_LEFT

TETRA_FRONT

Monday, March 15, 2010

Drawing a Tetrahedron

* Use a triangle strip

0

TETRA_TOP

TETRA_RIGHT

1

TETRA_LEFT

TETRA_FRONT

Monday, March 15, 2010

Drawing a Tetrahedron

* Use a triangle strip

0

TETRA_TOP

TETRA_RIGHT
TETRA_LEFT

p) 1

TETRA_FRONT

Monday, March 15, 2010

Drawing a Tetrahedron

* Use a triangle strip

0

TETRA_TOP

TETRA_RIGHT
TETRA_LEFT

p) 1

TETRA_FRONT 3

Monday, March 15, 2010

Drawing a Tetrahedron

* Use a triangle strip

0 4

TETRA_TOP

TETRA_RIGHT
TETRA_LEFT

p) 1

TETRA_FRONT 3

Monday, March 15, 2010

Drawing a Tetrahedron

* Use a triangle strip

0 4

TETRA_TOP

TETRA_RIGHT
TETRA_LEFT

p) [)

TETRA_FRONT 3

Monday, March 15, 2010

Demo

Geometry

Monday, March 15, 2010

Geometry Cheat Sheet

GLfloat vertexArrayl[] =
x1,vy1,z1,
X2,Y¥2,22,
X3,Y3,23, «.. };

GLubyte colorArrayl[] = {
rl,gl,bl,al,
r2,92,b2,a2,
r3,g3,b3,a3, ... };

glVertexPointer(dimOfVertices, GL_FLOAT, arrayOffset, vertexArray);
glEnableClientState(GL_VERTEX_ARRAY);

glColorPointer(4, GL_UNSIGNED_BYTE, arrayOffset, colorArray);
glEnableClientState(GL_COLOR_ARRAY);

glDrawArrays(GL_TRIANGLE_STRIP, arrayOffset, numberOfVertices);
// or GL_TRIANGLE_FAN, GL_TRIANGLES

glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);

Monday, March 15, 2010

Using Textures

Monday, March 15, 2010

Texture Mapping

* Color pixels according to an image in memory
» Almost always 2D (3D textures are possible though)
* Vertices are given texture coordinates (u,v)

Monday, March 15, 2010

Texture Atlasing

« Swapping textures often is inefficient
* Instead make one giant shared texture

Monday, March 15, 2010

Texture Atlasing

* Swapping textures often is inefficient
* Instead make one giant shared texture

Monday, March 15, 2010

Texture Atlasing

« Swapping textures often is inefficient

* Instead make one giant shared texture

e

3 2
S R\/E2 A

* Vertices may not have consistent (u,v) coordinates

Monday, March 15, 2010

Texture Atlasing

« Swapping textures often is inefficient
* Instead make one giant shared texture

TETRA_TOP

UPRIGHT_ONE

TETRA_RIGHT

TETRA_LEFT

-EFLy8Htices mdy not have ¢oisitent (u,v) coordingE&sA_FRONT

Monday, March 15, 2010

Demo

Textures

Monday, March 15, 2010

Texture Cheat Sheet

bash$ export PATH=${PATH}:/Developer/Platforms/iPhone0S.platform/Developer/usr/bin/
bash$ texturetool -f PVR —e PVRTC image.png —o image.pvrtc
bash$ # image.png must be square with power of side length —— e.g. 64, 256, 1024

#import
// From Apple's PVRTextureLoader Example Project

NSString x path = [[NSBundle mainBundle] pathForResource: ofType:
PVRTexture *x texture = [[PVRTexture alloc] initWithContentsOfFile: path];

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
(;
(

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texture.name);

GLFloat textureCoordArrayl[] = {
ul,vl,
u2,v2,
u3,v3, ... r;

glTexCoordPointer(2, GL_FLOAT, arrayOffset, textureCoordArray);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDrawArrays(GL_TRIANGLE_STRIP, arrayOffset, numberOfVertices);
glDisableClientState(GL_TEXTURE_COORD_ARRAY) ;

Monday, March 15, 2010

Other Details

Monday, March 15, 2010

OpenGL ES 1.1 vs.ES 2.0

* This lecture described OpenGL ES1.1

* ES 2.0 is drastically different
- Uses shader based approach

- More flexible, harder to wrap your head around
 ES 2.0 not available in iPhones before 3GS

Monday, March 15, 2010

Want to know more?
* Apple OpenGL Programming Guide
* OpenGL Redbook

* The Internets
 Stanford CS 148, 248

* Topics of interest

- Framebuffers

- Depth Testing

- Backface Culling

- Animation (not inherently part of OpenGL)
- Transparency and Blending

- Lighting and Shading

Monday, March 15, 2010

Questions?

Monday, March 15, 2010

