CS193P - Lecture 19

iPhone Application Development

OpenGL ES

Monday, March 15, 2010



Announcements

* Final projects due in 7 days
= Tuesday, March 16th 11:59 pm

= Submit:
= Code

- Power-point/Keynote slides
- ReadMe file

* Final project demos
- March 18, from 12:15 - 3:15 pm in Hewlett 201

- 2 minute presentation, followed by demo-fair
- Rapid-fire!!
= Time limit strictly enforced

- Let us know if you do not want to be recorded
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Today'’s Topics

* OpenGL Overview

* Coordinate Systems and Transformations
* Drawing Geometry

 Using Textures

* Other Details
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OpenGL Overview

» Software interface for graphics hardware
* Quickly render 2D or 3D graphics
* Hardware implementation agnostic

* OpenGL ES is a subset of OpenGL
« GLUT and GLU are not available on the iPhone
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OpenGlL is a state machine
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OpenGlL is a state machine

» Change Machine State

; ();
(); ();

* |ssue Drawing Commands

(); (); ...
* Read Back State, Drawing Results

OF ();
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Coordinate Systems
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The Coordinate System Onion
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Window Coordinates
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Normalized Device Coordinates

e
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Normalized Device Coordinates

A

Monday, March 15, 2010



Clip Coordinates

ILLUSTRATION

NOT FOUND




Eye Coordinates

[
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Eye Coordinates

(left, top, -zNear)

—

(aeright, a<bottom, -zFar)
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World Coordinates
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World Coordinates
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Object Coordinates
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Demo

Transformations
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Transformations Cheat Sheet

(GL_PROJECTION);
(GL_MODELVIEW);

();

(left, right, bottom, top, zNear, zFar);
(left, right, bottom, top, zNear, zFar);

(degrees, x, vy, 2z);
(X, y, 2);

(x, y, 2);
(matrix);

();
();
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Drawing Geometry
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Vertices

* OpenGL ES draws triangles, lines, and points

* Object space vertices mapped into window space
* Rasterize the shapes to get pixels
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Colors

* Each vertex can have a color associated

* RGBA
« Alpha usually means opacity

* Lines and triangles interpolate colors

Monday, March 15, 2010




Drawing Modes

* Vertices are passed to OpenGL ES in arrays

* Drawing modes determine how vertices are interpreted to
produce shapes

* Vertex order matters
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Drawing Modes

* Vertices are passed to OpenGL ES in arrays

* Drawing modes determine how vertices are interpreted to
produce shapes

* Vertex order matters

GL_TRIANGLES
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Drawing Modes

* Vertices are passed to OpenGL ES in arrays

* Drawing modes determine how vertices are interpreted to
produce shapes

* Vertex order matters

GL_TRIANGLES GL_TRIANGLE_FAN
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Drawing Modes

* Vertices are passed to OpenGL ES in arrays

* Drawing modes determine how vertices are interpreted to
produce shapes

* Vertex order matters

GL_TRIANGLES GL_TRIANGLE_FAN GL_TRIANGLE_STRIP
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Drawing a Tetrahedron

* Use a triangle strip

TETRA_TOP

TETRA_RIGHT
TETRA_LEFT

TETRA_FRONT
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* Use a triangle strip
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Drawing a Tetrahedron

* Use a triangle strip

0 4

TETRA_TOP

TETRA_RIGHT
TETRA_LEFT

p) [ )

TETRA_FRONT 3
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Demo

Geometry
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Geometry Cheat Sheet

GLfloat vertexArrayl[] =
x1,vy1,z1,
X2,Y¥2,22,
X3,Y3,23, «.. };

GLubyte colorArrayl[] = {
rl,gl,bl,al,
r2,92,b2,a2,
r3,g3,b3,a3, ... };

glVertexPointer(dimOfVertices, GL_FLOAT, arrayOffset, vertexArray);
glEnableClientState(GL_VERTEX_ARRAY);

glColorPointer(4, GL_UNSIGNED_BYTE, arrayOffset, colorArray);
glEnableClientState(GL_COLOR_ARRAY);

glDrawArrays(GL_TRIANGLE_STRIP, arrayOffset, numberOfVertices);
// or GL_TRIANGLE_FAN, GL_TRIANGLES

glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
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Using Textures
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Texture Mapping

* Color pixels according to an image in memory
» Almost always 2D (3D textures are possible though)
* Vertices are given texture coordinates (u,v)
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Texture Atlasing

« Swapping textures often is inefficient
* Instead make one giant shared texture
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Texture Atlasing

« Swapping textures often is inefficient

* Instead make one giant shared texture

e

3 2
S R\/E2 A

* Vertices may not have consistent (u,v) coordinates
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Texture Atlasing

« Swapping textures often is inefficient
* Instead make one giant shared texture

TETRA_TOP

UPRIGHT_ONE

TETRA_RIGHT

TETRA_LEFT

-EFLy8Htices mdy not have ¢oisitent (u,v) coordingE&sA_FRONT
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Demo

Textures
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Texture Cheat Sheet

bash$ export PATH=${PATH}:/Developer/Platforms/iPhone0S.platform/Developer/usr/bin/
bash$ texturetool -f PVR —e PVRTC image.png —o image.pvrtc
bash$ # image.png must be square with power of side length —— e.g. 64, 256, 1024

#import
// From Apple's PVRTextureLoader Example Project

NSString x path = [[NSBundle mainBundle] pathForResource: ofType:
PVRTexture *x texture = [[PVRTexture alloc] initWithContentsOfFile: path];

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
( ;
(

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texture.name);

GLFloat textureCoordArrayl[] = {
ul,vl,
u2,v2,
u3,v3, ... r;

glTexCoordPointer(2, GL_FLOAT, arrayOffset, textureCoordArray);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDrawArrays(GL_TRIANGLE_STRIP, arrayOffset, numberOfVertices);
glDisableClientState(GL_TEXTURE_COORD_ARRAY) ;
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Other Details

Monday, March 15, 2010



OpenGL ES 1.1 vs.ES 2.0

* This lecture described OpenGL ES1.1

* ES 2.0 is drastically different
- Uses shader based approach

- More flexible, harder to wrap your head around
 ES 2.0 not available in iPhones before 3GS
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Want to know more?
* Apple OpenGL Programming Guide
* OpenGL Redbook

* The Internets
 Stanford CS 148, 248

* Topics of interest

- Framebuffers

- Depth Testing

- Backface Culling

- Animation (not inherently part of OpenGL)
- Transparency and Blending

- Lighting and Shading
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Questions?
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