
CS193P - Lecture 10
iPhone Application Development

Performance
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Announcements
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Announcements
• Paparazzi 2 is due next Wednesday at 11:59pm
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Announcements
• Paparazzi 2 is due next Wednesday at 11:59pm
• Friday section tomorrow at 4 PM, Building 260 Room 113

■ Yelp
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A little more Core Data
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A little more Core Data
• NSFetchedResultsController

■ Interacts with the Core Data database on your behalf
■ [fetchedResultsController objectAtIndexPath:] gets at row data
■ [fetchedResultsController sections] gets at section data

3Monday, February 8, 2010



A little more Core Data
• NSFetchedResultsController

■ Interacts with the Core Data database on your behalf
■ [fetchedResultsController objectAtIndexPath:] gets at row data
■ [fetchedResultsController sections] gets at section data

• NSFetchedResultsSectionInfo
■ Protocol defining methods that you can call from your 

UITableViewDataSource methods
■ numberOfSectionsInTableView:
■ tableView:numberOfRowsInSection:
■ tableView:cellForRowAtIndexPath:
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Today’s Topics
• Memory Usage

■ Leaks
■ Autorelease
■ System warnings

• Concurrency
■ Threads
■ Operations and queues

• Additional Tips & Tricks
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iPhone Performance Overview
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iPhone Performance Overview
• iPhone applications must work with...

■ Limited memory
■ Slow or unavailable network resources
■ Less powerful hardware
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iPhone Performance Overview
• iPhone applications must work with...

■ Limited memory
■ Slow or unavailable network resources
■ Less powerful hardware

• Write your code with these constraints in mind
• Use performance tools to figure out where to invest
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Memory Usage

6Monday, February 8, 2010



Memory on the iPhone
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Memory on the iPhone
• Starting points for performance

■ Load lazily
■ Don’t leak
■ Watch your autorelease footprint
■ Reuse memory
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Memory on the iPhone
• Starting points for performance

■ Load lazily
■ Don’t leak
■ Watch your autorelease footprint
■ Reuse memory

• System memory warnings are a last resort
■ Respond to warnings or be terminated
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Loading Lazily
• Pervasive in Cocoa frameworks
• Do only as much work as is required

■ Application launch time!

• Think about where your code really belongs

• Use multiple NIBs for your user interface
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Loading a Resource Too Early
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Loading a Resource Too Early
• What if it’s not needed until much later? Or not at all?
- (id)init
{

self = [super init];
if (self) {

// Too early...
myImage = [self readSomeHugeImageFromDisk];

}
return self;

}
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Loading a Resource Lazily
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Loading a Resource Lazily
• Wait until someone actually requests it, then create it
- (UIImage *)myImage
{

if (myImage == nil) {
myImage = [self readSomeHugeImageFromDisk];

}
}
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Loading a Resource Lazily
• Wait until someone actually requests it, then create it

• This pattern benefits both memory and launch time

- (UIImage *)myImage
{

if (myImage == nil) {
myImage = [self readSomeHugeImageFromDisk];

}
}
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Loading a Resource Lazily
• Wait until someone actually requests it, then create it

• This pattern benefits both memory and launch time

• Not always the right move, consider your specific situation

- (UIImage *)myImage
{

if (myImage == nil) {
myImage = [self readSomeHugeImageFromDisk];

}
}
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Loading a Resource Lazily
• Wait until someone actually requests it, then create it

• This pattern benefits both memory and launch time

• Not always the right move, consider your specific situation
• Notice that above implementation is not thread-safe!

- (UIImage *)myImage
{

if (myImage == nil) {
myImage = [self readSomeHugeImageFromDisk];

}
}
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Plugging Leaks
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Plugging Leaks
• Memory leaks are very bad

■ Especially in code that runs often
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Plugging Leaks
• Memory leaks are very bad

■ Especially in code that runs often

• Luckily, leaks are easy to find with the right tools
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Method Naming and Object Ownership
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Method Naming and Object Ownership
• If a method’s name contains alloc, copy or new,

then it returns a retained object
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Method Naming and Object Ownership
• If a method’s name contains alloc, copy or new,

then it returns a retained object
• Balance calls to alloc, copy, new or retain with calls to release or 

autorelease
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Method Naming and Object Ownership
• If a method’s name contains alloc, copy or new,

then it returns a retained object
• Balance calls to alloc, copy, new or retain with calls to release or 

autorelease
■ Early returns can make this very difficult to do!
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Finding Leaks
• Use Instruments with the Leaks recorder
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Identifying Leaks in Instruments
• Each leak comes with a backtrace
• Leaks in system code do exist, but they’re rare

■ If you find one, tell us at http://bugreport.apple.com

• Consider your own application code first
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Caught in the Act
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Demo:
Finding Leaks with Instruments
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Autorelease and You
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Autorelease and You
• Autorelease simplifies your code

■ Worry less about the scope and lifetime of objects
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Autorelease and You
• Autorelease simplifies your code

■ Worry less about the scope and lifetime of objects

• When an autorelease pool is drained, it calls -release on each 
object
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Autorelease and You
• Autorelease simplifies your code

■ Worry less about the scope and lifetime of objects

• When an autorelease pool is drained, it calls -release on each 
object

• An autorelease pool is created automatically for each iteration 
of your application’s run loop
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So What’s the Catch?
• What if many objects are autoreleased before the pool pops?
• Consider the maximum memory footprint of your application
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A Crowded Pool...

19Monday, February 8, 2010



Reducing Your High-Water Mark
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Reducing Your High-Water Mark
• When many objects will be autoreleased, create and release 

your own pool
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• When many objects will be autoreleased, create and release 
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■ Usually not necessary, don’t do this without thinking!
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Reducing Your High-Water Mark
• When many objects will be autoreleased, create and release 

your own pool
■ Usually not necessary, don’t do this without thinking!
■ Tools can help identify cases where it’s needed
■ Loops are the classic case
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Autorelease in a Loop
• Remember that many methods return autoreleased objects
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Autorelease in a Loop
• Remember that many methods return autoreleased objects
for (int i = 0; i < someLargeNumber; i++) {

NSString *string = ...;
string = [string lowercaseString];
string = [string stringByAppendingString:...];
NSLog(@“%@”, string);

}
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Creating an Autorelease Pool
• One option is to create and release for each iteration

22Monday, February 8, 2010



Creating an Autorelease Pool
• One option is to create and release for each iteration
for (int i = 0; i < someLargeNumber; i++) {

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSString *string = ...;
string = [string lowercaseString];
string = [string stringByAppendingString:...];
NSLog(@“%@”, string);

[pool release];
}
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Outliving the Autorelease Pool
• What if some object is needed outside the scope of the pool?
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Outliving the Autorelease Pool
• What if some object is needed outside the scope of the pool?
NSString *stringToReturn = nil;

for (int i = 0; i < someLargeNumber; i++) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSString *string = ...;
string = [string stringByAppendingString:...];

if ([string someCondition]) {
stringToReturn = [string retain];

}

[pool release];
if (stringToReturn) break;

}

return [stringToReturn autorelease];
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Reducing Use of Autorelease
• Another option is to cut down on use of autoreleased objects

■ Not always possible if you’re callling into someone else’s code

• When it makes sense, switch to alloc/init/release
• In previous example, perhaps use a single NSMutableString?
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Demo:
Measuring Your High-Water Mark
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Object Creation Overhead
• Most of the time, creating and deallocating objects is not a 

insignificant hit to application performance
• In a tight loop, though, it can become a problem...
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Object Creation Overhead
• Most of the time, creating and deallocating objects is not a 

insignificant hit to application performance
• In a tight loop, though, it can become a problem...

for (int i = 0; i < someLargeNumber; i++) {
MyObject *object = [[MyObject alloc] initWithValue:...];
[object doSomething];
[object release];

}
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Reusing Objects
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Reusing Objects
• Update existing objects rather than creating new ones
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Reusing Objects
• Update existing objects rather than creating new ones
• Combine intuition and evidence to decide if it’s necessary
MyObject *myObject = [[MyObject alloc] init];

for (int i = 0; i < someLargeNumber; i++) {
myObject.value = ...;
[myObject doSomething];

}

[myObject release];

27Monday, February 8, 2010



Reusing Objects
• Update existing objects rather than creating new ones
• Combine intuition and evidence to decide if it’s necessary

• Remember -[UITableView dequeueReusableCellWithIdentifier]

MyObject *myObject = [[MyObject alloc] init];

for (int i = 0; i < someLargeNumber; i++) {
myObject.value = ...;
[myObject doSomething];

}

[myObject release];
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Memory Warnings
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Memory Warnings
• Coexist with system applications
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Memory Warnings
• Coexist with system applications
• Memory warnings issued when memory runs out
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Memory Warnings
• Coexist with system applications
• Memory warnings issued when memory runs out

• Respond to memory warnings or face dire consequences!
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Memory Warnings
• Coexist with system applications
• Memory warnings issued when memory runs out

• Respond to memory warnings or face dire consequences!
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Responding to Memory Warnings
• Every view controller gets -didReceiveMemoryWarning

■ By default, releases the view if it’s not visible
■ Release other expensive resources in your subclass
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Responding to Memory Warnings
• Every view controller gets -didReceiveMemoryWarning

■ By default, releases the view if it’s not visible
■ Release other expensive resources in your subclass

- (void)didReceiveMemoryWarning
{

// Always call super
[super didReceiveMemoryWarning];

// Release expensive resources
[expensiveResource release];
expensiveResource = nil;

}
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Responding to Memory Warnings
• Every view controller gets -didReceiveMemoryWarning

■ By default, releases the view if it’s not visible
■ Release other expensive resources in your subclass

- (void)didReceiveMemoryWarning
{

// Always call super
[super didReceiveMemoryWarning];

// Release expensive resources
[expensiveResource release];
expensiveResource = nil;

}

• App Delegate gets -applicationDidReceiveMemoryWarning:
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What Other Resources Do I Release?
• Images
• Sounds
• Cached data
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What Other Resources Do I Release?
• Images
• Sounds
• Cached data
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Use SQLite/Core Data for Large Data Sets
• Many data formats keep everything in memory
• SQLite can work with your data in chunks
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More on Memory Performance
• “Memory Usage Performance Guidelines”

https://developer.apple.com/iphone/library/documentation/
Performance/Conceptual/ManagingMemory/
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Concurrency
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Why Concurrency?
• With a single thread, long-running operations may interfere 

with user interaction
• Multiple threads allow you to load resources or perform 

computations without locking up your entire application
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Threads on the iPhone
• Based on the POSIX threading API

■ /usr/include/pthread.h

• Higher-level wrappers in the Foundation framework
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NSThread Basics
• Run loop automatically instantiated for each thread 
• Each NSThread needs to create its own autorelease pool
• Convenience methods for messaging between threads
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Typical NSThread Use Case
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Typical NSThread Use Case
- (void)someAction:(id)sender
{

// Fire up a new thread
[NSThread detachNewThreadSelector:@selector(doWork:)
                       withTarget:self object:someData];

}
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Typical NSThread Use Case
- (void)someAction:(id)sender
{

// Fire up a new thread
[NSThread detachNewThreadSelector:@selector(doWork:)
                       withTarget:self object:someData];

}

- (void)doWork:(id)someData
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

[someData doLotsOfWork];

// Message back to the main thread
[self performSelectorOnMainThread:@selector(allDone:)
       withObject:[someData result] waitUntilDone:NO];

[pool release];
}
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UIKit and Threads
• Unless otherwise noted, UIKit classes are not threadsafe

■ Objects must be created and messaged from the main thread

• You can create a UIImage on a background thread
■ But you can’t set it on a UIImageView

38Monday, February 8, 2010



Demo:
Threads and Xcode
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Locks
• Protect critical sections of code, mediate access to shared data
• NSLock and subclasses
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Locks
• Protect critical sections of code, mediate access to shared data
• NSLock and subclasses

- (void)init
{

myLock = [[NSLock alloc] init];
}

- (void)someMethod
{

[myLock lock];
// We only want one thread executing this code at once
[myLock unlock]

}
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Conditions
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Conditions
• NSCondition is useful for producer/consumer model
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Conditions
• NSCondition is useful for producer/consumer model

// On the producer thread
- (void)produceData
{

[condition lock];

// Produce new data
newDataExists = YES;

[condition signal];
[condition unlock];

}
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Conditions
• NSCondition is useful for producer/consumer model

// On the producer thread
- (void)produceData
{

[condition lock];

// Produce new data
newDataExists = YES;

[condition signal];
[condition unlock];

}

// On the consumer thread
- (void)consumeData
{

[condition lock];
while(!newDataExists) {

[condition wait];
}

// Consume the new data
newDataExists = NO;

[condition unlock];
}
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Conditions
• NSCondition is useful for producer/consumer model

• Wait is equivalent to: unlock, sleep until signalled, lock

// On the producer thread
- (void)produceData
{

[condition lock];

// Produce new data
newDataExists = YES;

[condition signal];
[condition unlock];

}

// On the consumer thread
- (void)consumeData
{

[condition lock];
while(!newDataExists) {

[condition wait];
}

// Consume the new data
newDataExists = NO;

[condition unlock];
}
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The Danger of Locks
• Very difficult to get locking right!
• All it takes is one poorly behaved client

■ Accessing shared data outside of a lock
■ Deadlocks
■ Priority inversion
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Threading Pitfalls
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• Subtle, nondeterministic bugs may be introduced
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Threading Pitfalls
• Subtle, nondeterministic bugs may be introduced
• Code may become more difficult to maintain

• In the worst case, more threads can mean slower code
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Alternatives to Threading
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Alternatives to Threading
• Asynchronous (nonblocking) functions

■ Specify target/action or delegate for callback
■ NSURLConnection has synchronous and asynchronous variants
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Alternatives to Threading
• Asynchronous (nonblocking) functions

■ Specify target/action or delegate for callback
■ NSURLConnection has synchronous and asynchronous variants

• Timers
■ One-shot or recurring
■ Specify a callback method
■ Managed by the run loop
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Alternatives to Threading
• Asynchronous (nonblocking) functions

■ Specify target/action or delegate for callback
■ NSURLConnection has synchronous and asynchronous variants

• Timers
■ One-shot or recurring
■ Specify a callback method
■ Managed by the run loop

• Higher level constructs like operations
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NSOperation
• Abstract superclass
• Manages thread creation and lifecycle

• Encapsulate a unit of work in an object
• Specify priorities and dependencies
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Creating an NSOperation Subclass
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Creating an NSOperation Subclass
• Define a custom init method

- (id)initWithSomeObject:(id)someObject
{

self = [super init];
if (self) {

self.someObject = someObject;
}
return self;

}
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Creating an NSOperation Subclass
• Define a custom init method

• Override -main method to do work

- (id)initWithSomeObject:(id)someObject
{

self = [super init];
if (self) {

self.someObject = someObject;
}
return self;

}

- (void)main
{

[someObject doLotsOfTimeConsumingWork];
}
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NSOperationQueue
• Operations are typically scheduled by adding to a queue
• Choose a maximum number of concurrent operations
• Queue runs operations based on priority and dependencies
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Using an NSInvocationOperation
• Concrete subclass of NSOperation
• For lightweight tasks where creating a subclass is overkill
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Using an NSInvocationOperation
• Concrete subclass of NSOperation
• For lightweight tasks where creating a subclass is overkill

- (void)someAction:(id)sender
{

NSInvocationOperation *operation =
  [[NSInvocationOperation alloc] initWithTarget:self
                         selector:@selector(doWork:)
                           object:someObject];

[queue addObject:operation];

[operation release];
}
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Demo:
Threaded Flickr Loading
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More on Concurrent Programming
• “Threading Programming Guide”

https://developer.apple.com/iphone/library/documentation/
Cocoa/Conceptual/Multithreading
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Additional Tips & Tricks
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Drawing Performance
• Avoid transparency when possible

■ Opaque views are much faster to draw than transparent views
■ Especially important when scrolling

• Don’t call -drawRect: yourself
• Use -setNeedsDisplayInRect: instead of -setNeedsDisplay
• Use CoreAnimation Instrument
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Reuse Table View Cells
• UITableView provides mechanism for reusing table view cells
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Reuse Table View Cells
• UITableView provides mechanism for reusing table view cells

- (UITableViewCell *)tableView:(UITableView *)tableView 
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

return cell;
}
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Reuse Table View Cells
• UITableView provides mechanism for reusing table view cells

- (UITableViewCell *)tableView:(UITableView *)tableView 
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

return cell;
}

// Ask the table view if it has a cell we can reuse
UITableViewCell *cell = 
[tableView dequeueReusableCellWithIdentifier:MyIdentifier];
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Reuse Table View Cells
• UITableView provides mechanism for reusing table view cells

- (UITableViewCell *)tableView:(UITableView *)tableView 
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

return cell;
}

// Ask the table view if it has a cell we can reuse
UITableViewCell *cell = 
[tableView dequeueReusableCellWithIdentifier:MyIdentifier];

if (!cell) { // If not, create one with our identifier
cell = [[UITableViewCell alloc] initWithFrame:CGRectZero
                               identifier:MyIdentifier];
[cell autorelease];

}
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Get notified 
• Don’t continuously poll!

■ Unless you must, which is rare

• Hurts both responsiveness and battery life
• Look in the documentation for a notification, delegate callback 

or other asynchronous API
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Take Samples
• Instrument that lets you monitor CPU usage
• Backtrace taken every fraction of a second
• Higher samples = better candidates for optimization
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Recap
• Performance is an art and a science

■ Combine tools & concrete data with intuition & best practices

• Don’t waste memory
• Concurrency is tricky, abstract it if possible
• Drawing is expensive, avoid unnecessary work
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Questions?
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