
Assignment VI:

Virtual Vacation
Objective

In this series of assignments, you have been creating an application that lets you browse
photos posted on Flickr. In this final installment, you will use what you have built so far
to allow your user to build a “virtual vacation” by visiting photos from around the
world.

The primary work to be done in this assignment is to use CoreData to build a database
of photos organized by vacation which the user can peruse and search.

Be sure to check out the Hints section below!

Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Materials

• The class CoreDataTableViewController is provided. A new version of FlickrFetcher
is also available and is necessary for this assignment.

• You will still need your Flickr API key.

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 1 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

http://www.flickr.com/services/api/misc.api_keys.html
http://www.flickr.com/services/api/misc.api_keys.html

Required Tasks

This application lets the user assemble a Virtual Vacation of places in the world to visit.
Users will use the photo-choosing capabilities of your Fast Map Places application to
choose photos in the places they want to go. In this application you will have two major
tasks: allowing the user to choose where they want to go and allowing the user to "go on
vacation" in their Virtual Vacation spots. You will accomplish the former by adding a
"Visit/Unvisit" button to the scenes in your Fast Map Places where a photo is displayed.
You will accomplish the latter by adding a new tab to your Tab Bar Controller which lets
the user peruse their Virtual Vacation either by place or by searching for tags that were
found in the Flickr dictionaries for the photos they chose to visit.

1. Add a new tab to your application that displays a new table view controller showing a
list of all the "Virtual Vacations" found in the user's Documents directory in their
sandbox. A Virtual Vacation file is created by saving a UIManagedDocument (more on
this below). Each vacation must have it’s own separate file in the Documents directory.

2. When the user chooses a Virtual Vacation from the list, bring up a static table view
with two choices: Itinerary and Tag Search.

3. The Itinerary tab must show a list of all the places where photos in the chosen Virtual
Vacation have been taken (sorted with first-visited first). Clicking on a place will show
all the photos in the Virtual Vacation taken in that place. The place name should be
the one returned by getting the new FLICKR_PHOTO_PLACE_NAME key in the Flickr photo
dictionaries you retrieve from the photosInPlace:maxResults: method. You will need
to use the new FlickrFetcher code available with this assignment. Use only the place’s
name (as returned the the FLICKR_PHOTO_PLACE_NAME key) to determine what the place
is (i.e. ignore things like the Flickr place id).

4. The Tag Search tab must bring up a list of all the tags found in all the photos that the
user has chosen to be a part of this Virtual Vacation (sorted with most-often-seen first).
Touching on a tag brings up a list of all the photos in the Virtual Vacation that have
that tag. The tags in a Flickr photo dictionary are contained in a single, space-
separated, all lowercase string (accessible via the FLICKR_TAGS key). Separate out and
capitalize each tag (not all caps, just capitalize the first letter) so that they look nicer in
the UI. Don't include any tags that have a colon in them.

5. You are not required to provide any UI for users to create new Virtual Vacations (see
Extra Credit #1 if you want to), so simply create a single Virtual Vacation called "My
Vacation" in the user's Documents directory somewhere in your code. All "visits" and
"unvisits" will happen in this "My Vacation" Virtual Vacation. However, just because
you do not have to provide UI to create new vacations does not mean you are
exempted from any other required tasks which support multiple Virtual Vacations (like
Required Task #1). You may well want to create some other Virtual Vacations anyway
just to verify that the rest of your code deals properly with multiple of them.

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 2 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

6. All of the new tables in this application that show places or photos or tags must be
driven by Core Data. It is your responsibility to determine the schema which best
supports your needs.

7. To make all this work, of course, you will need to add a Visit/Unvisit button to the
scenes in the storyboard which show a photo. If that photo is already in "My
Vacation," then the button’s title should appear as "Unvisit," otherwise it should appear
as "Visit." Clicking this button toggles whether the photo is part of "My Vacation" or
not.

8. You do not have to get this working on both platforms. Pick whichever of the two you
want. It does, however, have to work on a real device, so pick the device you have the
hardware for.

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 3 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

Hints

1. It is much, much easier if you only ever have one UIManagedDocument instance per
document-on-disk (remember that each vacation is its own document on disk), which
is shared by your whole application (though it is perfectly legal to open the same
document multiple times each with its own instance of UIManagedDocument).

There are a number of ways to share a UIManagedDocument instance for each file. For
example, you could have a “helper” class that only has a single class method to hand
out a shared UIManagedDocument for a given vacation:

@interface VacationHelper

 + (UIManagedDocument *)sharedManagedDocumentForVacation:(NSString *)vacationName;
@end

In this case, though, anywhere your code uses a document, it would have to make sure
it was properly opened or created first. This could result in a fair amount of
duplicated code.

Or you could use an API like this to have the helper class open or create the document
as needed before handing it out (but since opening and creating are asynchronous, this
helper method would have to hand the UIManagedDocument to the caller using a block).

typedef void (^completion_block_t)(UIManagedDocument *vacation);

@interface VacationHelper : NSObject

+ (void)openVacation:(NSString *)vacationName
 usingBlock:(completion_block_t)completionBlock;

@end

It is up to you how you want to share UIManagedDocuments for a given vacation, but it
is highly recommended that you do so.

2. If you do not follow Hint #1 and end up with multiple UIManagedDocument instances
for the same document, you must keep them in sync yourself. This will not happen
automatically. That’s why we want all code that is looking at a particular document to
be using the same instance of UIManagedDocument.

3. If you are using the second approach in Hint #1, check the lecture on blocks to
refresh your memory how to invoke a block (like completionBlock) from your code.

4. You might find the NSFileManager method
contentsOfDirectoryAtURL:includingPropertiesForKeys:options:error: useful for
finding out what vacations the user has (even though you’re only going to actually

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 4 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

create one vacation, you have to write the code as if you support any number of
them).

5. Give some thought to how you will pass the user’s chosen vacation (from the table in
Required Task #1) around. For example, your static table view will likely have to pass
that information on through to the controllers it segues to.

6. Remember that all NSManagedObjects know what NSManagedObjectContext they are in
(can be accessed via the NSManagedObject’s managedObjectContext property).

7. NSManagedObjectContext is not thread-safe! Only access an
NSManagedObjectContext in the thread in which it (or its UIManagedDocument) was
created or use the performBlock: or performBlockAndWait: method in
NSManagedObjectContext (which will make sure the block is performed on the right
thread for that context, which may well be the main thread). You do not have to do
any of this for this assignment (just use the main thread for all Core Data access).

8. The string @“My Vacation” should only appear on one line of code in your
application (somewhere in your Visit button implementation). In other words, don’t
hardwire it anywhere else; the rest of your implementation should be generic with
respect to vacation documents.

9. The table of places in a vacation has to be ordered by first-visited first, so you will
need to have an attribute that records when this place was first added to the database.

10. You will also need an attribute somewhere in your database that keeps track of how
many photos have a given tag (it’s easy to calculate if you have a to-many relationship
between these search tags and the photos which have those tags). You’ll have to
update this attribute both when new photos are added to the vacation and when
photos are deleted (“unvisited”).

11. The list of photos in a place in the vacation can be ordered however you want.

12. You can get/set your Entities’ Attributes using valueForKey:/setValueForKey: if you
prefer, but you’re probably going to want to create a custom subclass of
NSManagedObject and add an Objective-C category for your own Entity-specific code
as described in lecture. This is especially true when it comes to creating objects (since
you’ll want to properly set up any relationships between the objects) and deleting
objects (since you’ll want to clean up any relationships between objects in
prepareForDeletion).

13. When you insert an object in the database, that’s a good time to insert any other
objects it depends on too and set up the relationships between them (simply by
assigning values to the properties involved). The only modification this application
makes to the database is to add a photo (by “visiting” it), but obviously many other
objects may be created in the database when that happens. Collecting all that
database modification into the method that adds the photo would be pretty clean.

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 5 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

14. When you delete an object from the database, be careful not to hang onto a strong
pointer to it (since it will be gone after you delete it).

15. Do not use an attribute in your data model named description. This will be
tempting, but it will cause problems (because of NSObject’s description method).

16. Do not use an attribute in your data model named id. You can imagine the problems
this might cause in Objective-C.

17. NSLog()ing NSManagedObjects is very useful. It will show you lots of detail (assuming
the object in question has already been faulted in from the database).

18. Remember that in order to fetch a list of a certain type of object (like a “tag” or a
“photo”), there must be a representation for that object (an Entity) in the managed
object model you create in Xcode’s data modeler. Or, in database terms, there must
be a “table” for it. For example, you cannot fetch a list of “photos” into a table view
using NSFetchedResultsController if there is no Entity that represents a “photo” in
the database.

19. If you change your object model (and you will likely do that numerous times as you
iterate on your schema), be sure to delete your application from your device or
simulator before running it with a new schema so that your old database (with the old
schema) gets removed. You do this by pressing and holding on the application icon on
the home screen of the device or simulator until it jiggles, then pressing the X that
appears in the corner of the icon. If you fail to do this when you change your
schema, your program will crash (with complaints in the console about incompatible
database descriptions).

20. Make sure you save changes you make to a vacation document using saveToURL:
forSaveOperation:completionHandler:. You will probably only be modifying your
document in the implementation of your Visit button.

21. Note that if you have a two-way relationship in your model, setting one side
automatically sets the other side properly for you.

22. “To many” relationships are represented simply as an NSSet of NSManagedObject
instances (or subclasses thereof). You can make a mutableCopy of the NSSet and
manipulate it (then set the property to your mutable copy) or there are “convenience
methods” to add/remove objects from the set if you make a custom subclass of your
NSManagedObjects (which is highly recommended).

23. You do not have to use the provided CoreDataTableViewController for this
assignment, but it’s extremely likely you’ll want to! Its implementation is mostly just
copy/pasted from the documentation of NSFetchedResultsController. It’s very easy
to subclass and use. The only thing you have to do to make it work is to set the
fetchedResultsController property. The only UITableViewDataSource method
you’re going to have to implement is tableView:cellForRowAtIndexPath:. You’ll also
want to implement tableView:didSelectRowAtIndexPath: and/or

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 6 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

prepareForSegue:sender:. Using the method objectAtIndexPath: on
self.fetchedResultsController is wonderful for implementing these.

24. Note that whenever you save your Core Data database (by saving your vacation
document), things will automatically update in the user-interface without your having
to do anything if you use NSFetchedResultsController (like
CoreDataTableViewController does). That is the wonder of
NSFetchedResultsController and Core Data’s use of the key-value observing
mechanism. If you implement your table views without using
NSFetchedResultsController (e.g. without CoreDataTableViewController), then
you’ll have to figure out how to get your tables updated on your own.

25. If you find yourself writing a lot of code to make your table views work, then you are
probably headed down the wrong path. Let NSFetchedResultsController (via
CoreDataTableViewController) do all the work for you.

26. The sorting in CoreDataTableViewController-based view controllers will happen
automatically as part of the NSFetchRequest you use to create your
NSFetchedResultsController. Just make sure each has the right NSSortDescriptor(s)
(and the right attributes in your database schema).

27. You do not have to update your Recents tab when users are “on vacation.” In other
words, whatever code you have there from the last assignment is fine.

28. Your image-displaying MVC from the last assignment needs a couple of upgrades. It
must now be able to show an image which is specified by a photo in the database (for
when the user is “on vacation”) in addition to one defined by a Flickr photo dictionary
(your existing use of it) and it must be able to support scenes that include the Visit
button. It is strongly recommended that you use good object-oriented programming
technique here. For example, you may well want a class whose entire implementation
is just the handling of the Visit button (and which inherits all the rest of the behavior
it needs to display the photo).

29. Be careful of the case where you hit the Univisit button while the user is viewing the
photo while “on vacation.” You might have to clear the image view on the iPad
because you’ll have deleted the photo from the database and thus can’t Visit it again.
That’s a fine solution. And on the iPhone, you’ll probably want to pop your
navigation controller in that case.

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 7 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

Screen Shots

You don’t have to implement your user-interface exactly like this, but you must fulfill all
required tasks.

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 8 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

Evaluation

In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.

Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Assignment was turned in late (you get 3 late days per quarter, so use them wisely).

• Code is too lightly or too heavily commented.

• Code crashes.

• User-interface hangs or is blocked from action by the user.

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 9 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

Extra Credit

If you do any Extra Credit items, don’t forget to note what you did in your submission
README.

1. Add UI to allow the user to add new vacation documents and to pick which vacation
they are visiting when they choose the Visit button.

2. Allow users to reorder their itinerary for their vacation. To do this, you might want to
think about creating a top-level Entity (Itinerary) in your schema and using an “ordered
to-many relationship” to store the places in the itinerary. An “ordered to-many
relationship” appears in your code as an NSOrderedSet (instead of an NSSet). The
table view that shows the places in the itinerary will have to be rewritten to display this
NSOrderedSet of places (it won’t be able to be an NSFetchedResultsController-based
table view) and you will have to figure out how to use UITableView API to edit an
NSMutableOrderedSet. Warning: while this is not that difficult to implement coding-
wise, it requires quite a bit of investigation to figure out. Another approach is to add
an attribute in your schema that determines the order (but this can be a little bit
clunky). The former approach will probably lead to more learning opportunities.

3. Let the user search inside the tags table view. This is a non-trivial extra credit exercise,
but you’ll definitely want to use NSSearchBarController.

CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 10 OF 10	
 	
 ASSIGNMENT VI: VIRTUAL VACATION

