
Assignment IV:

Top Places
Objective

In this series of assignments, you will create an application that presents a list of popular
Flickr photo spots. This first assignment is to create a navigation-based application to
let users browse the most popular places on Flickr, click on any they are interested in to
see some photos taken in that place.

The primary work to be done in this assignment is to create build a tab-based user-
interface with two tabs: Top Places and Recents. The first two will show the names of
places and the second a list of the most recently-viewed photos.

The goals are to get familiar with table views, tab bar controller, scroll views, image
views and to get experience building yet more MVCs in your application.

All the data you need will be downloaded from Flickr.com using Flickr’s API. Code will
be provided for the Flickr queries you need for this assignment.

Be sure to check out the Hints section below!

Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Materials

• This is a completely new application, so you will not need anything (but the knowledge
you gained) from your first three homework assignments.

• You will need to obtain a Flickr API key. A free Flickr account is just fine (you won’t be
posting photos, just querying them).

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 1 OF 6	
 	
 ASSIGNMENT IV: TOP PLACES

http://www.flickr.com/services/api/misc.api_keys.html
http://www.flickr.com/services/api/misc.api_keys.html

Required Tasks

1. Use the provided FlickrFetcher class method topPlaces to get an array of the most
popular Flickr photo spots in the last day or so. It is an array of NSDictionarys which
contain information about each place.

2. Create a UITabBarController-based user-interface with two tabs. The first shows a
UITableView with the list of places (in alphabetical order) obtained in Required Task
#1. The second shows a UITableView with a list of the 20 most recently viewed
photos.

3. Anywhere a place appears in a table view in your application, the most detailed part of
the location (e.g. the city name) should be the title of the table view’s cell and the
rest of the name of the location (e.g. state, province, country, etc.) should appear as the
subtitle of the table view cell.

4. When the user chooses a place from the list obtained in Required Task #1, you must
query Flickr again to get an array of 50 recent photos from that place and display
them in a list. Do this using the FlickrFetcher method photosInPlace:maxResults:
(it returns an array of dictionaries, each of which contains info about a photo).

5. Any list of photos should display the photo’s title as the table view cell’s title and its
description as the table view cell’s subtitle. If the photo has no title, use its description
as the title. If it has no title or description, use “Unknown” as the title.

6. When the user chooses a photo from any list, display its image inside a scrolling view
that allows the user to pan and zoom (a reasonable amount). You obtain the URL for
a Flickr photo’s image using FlickrFetcher’s urlForPhoto:format: (use Large).

7. Make sure the photo’s title is somewhere on screen whenever you are showing the
photo image to the user.

8. Whenever a photo’s image appears on screen, it should initially be zoomed to show as
much of the photo as possible with no extra, unused space. It is not necessary to
continue to do this as the user rotates the device or zooms in and out on the photo by
pinching.

9. Your application must work in both portrait and landscape orientations on the iPhone.
Support for the iPad is optional (though it will be required next week, so you can save
time later by implementing it now). Use appropriate platform-specific UI idioms (e.g.,
you must use UINavigationControllers to present the information on the iPhone).

10. The recents tab must show the list of most recently view photos in chronological order
of viewing with the most recent at the top, and no duplicates in the list. It is sufficient
to only update the list each time it (re)appears on screen (i.e. in viewWillAppear:). A
photo can be uniquely identified by its “id” entry in its dictionary.

11. The list of recents photos should be saved in NSUserDefaults. The arrays you get
back from the FlickrFetcher methods are all property lists.

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 2 OF 6	
 	
 ASSIGNMENT IV: TOP PLACES

Hints

1. Put your own Flickr API key into FlickrAPIKey.h or your queries will not work.

2. It is possible to start off this assignment with the Tabbed Application template (or
even the Master-Detail Application template) and you are welcome to play with doing
so. However, it is also fine to just start with the Single View Application template and
drag in the UITableViewControllers you need and use the Embed menu item (for
UINavigationControllers, UITabBarControllers and UIScrollViews) as needed and
then ctrl-drag to set up Relationships (like rootViewController or viewControllers)
and Segues. It is an important part of this assignment to reinforce your understanding
of how these storyboard-construction objects all relate to each other.

3. The very first thing you’re probably going to want to do once you have copied the
FlickrFetcher code into your application (and set your API key) is to do a topPlaces
query and then NSLog() the results. That way you can see the format of the fetched
Flickr results (it’s an NSArray of NSDictionary objects). Ditto when you query Flickr
for the list of photos at a given place.

4. If you look carefully, you’ll notice that the value for the key description in a
dictionary of photo information from Flickr is not actually the photo’s description.
Instead, it’s another NSDictionary that has a key _content in it. That’s where the
actual description is. The method valueForKeyPath: can be sent to an NSDictionary
with a key with dots in it, e.g., “description._content” to access sub-dictionaries.

5. The key id (in a photo’s dictionary of info) is a unique, persistent photo identifier.

6. To create a table-view-based MVC, drag a Table View Controller out of the Object
Library into your storyboard and change its class to be a custom subclass of
UITableViewController (don’t forget to change the superclass to
UITableViewController in the dialog that New File ... brings up). You will likely want
a number of different UITableViewController subclasses for this assignment.

7. Each MVC should be set up with the information it needs before it is pushed and then
allowed to go do its thing. And use your awesome object-oriented programming
design skills to be certain to reuse as much code as possible. Many of the MVC’s in
this application are very similar. It is perfectly fine to create a subclass of
UITableViewController to do something, then create a subclass of that class to do
something slightly more refined.

8. Note that all the UITableViewCells in this assignment require subtitles, so you must set
that as the type of the cell in Xcode for your dynamic prototypes. It’s probably also a
good idea to set the “backup” cell creation code in
tableView:cellForRowAtIndexPath: to be the Subtitle type as well (just for
consistency).

9. Don’t forget that the UITableViewCell reuse identifiers that you set in Xcode for
dynamic prototype cells must match what is in your

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 3 OF 6	
 	
 ASSIGNMENT IV: TOP PLACES

http://www.flickr.com/services/api/misc.api_keys.html
http://www.flickr.com/services/api/misc.api_keys.html

tableView:cellForRowAtIndexPath: methods. This can be a little confusing if you
choose to have subclasses of subclasses of UITableViewController (since you are then
inheriting tableView:cellForRowAtIndexPath:), so pick good reuse identifier names
(that succinctly describe what the cell is displaying).

10. Turning a URL on the internet into a UIImage is easy. Just create an NSData with the
contents of that URL ([NSData dataWithContentsOfURL:theURL]), then create a
UIImage using that NSData ([UIImage imageWithData:imageData]).

11. Required Task #8 (initial photo zooming) requires some calculations involving the
UIScrollView’s bounds and the size of the photo. Don’t forget from lecture where (in
the View Controller Lifecycle) geometry calculations for a view have to occur.

12. If you support iPad this week, don’t forget you’ll need some view controller to serve as
your UISplitViewControllerDelegate. Any of them is probably okay, but if you
choose your detail view controller, you will be able to do the bar button dance a little
more easily (since that’s the view controller that places the button in the UI).

13. If you want to update the detail view controller in a split view on the iPad from a
master view controller which is a table view controller, you’ll probably want to
implement the tableView:didSelectRowAtIndexPath: method in the master (it’s sort
of the “target/action” method of a table view) rather than segueing. You’ll want to
do the same things in that method that you do in prepareForSegue:sender: (i.e. set
the Model (and any “how to display this” properties) of the destination view
controller).

14. If you are resetting the image of your image-displaying MVC (e.g. it’s the detail view
controller in a split view), be careful to reset your UIScrollView’s zoomScale back to 1
before you reset the contentSize for a new image. The zoomScale affects the
contentSize (e.g., when you zoom in the contentSize is automatically be adjust to be
larger and when you zoom out, it gets smaller), so if you have a zoomScale other than
1 and you start mucking with the contentSize, you’ll get results you’re probably not
anticipating.

15. The method mutableCopy in NSArray might come in handy when you want to add
something to a data structure already stored (immutably) in NSUserDefaults.

16. You’re going to notice that your application is not very responsive. Whenever it goes
off to query Flickr, there’ll be a big pause. This is very bad, but we will be learning
how to solve this next week, so don’t waste your time trying to fix it now.

17. As always, the amount of code required to implement this application is not huge
(under 100 lines of code, if you only count the ones added between curly braces). If
you find yourself needing dozens of lines of code for any one feature, there’s probably
a better way to go about it. In general, “brawn over brains” solutions (i.e. “just keep
typing in code until it works”) are bug-prone and a pain to maintain, so avoid them
like the plague! We use object-oriented programming for a reason. Use its
mechanisms to the fullest.

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 4 OF 6	
 	
 ASSIGNMENT IV: TOP PLACES

Evaluation

In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.

Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Assignment was turned in late (you get 3 late days per quarter, so use them wisely).

• Code is too lightly or too heavily commented.

• Code crashes.

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 5 OF 6	
 	
 ASSIGNMENT IV: TOP PLACES

Extra Credit

If you do any Extra Credit items, don’t forget to note what you did in your submission
README.

1. Divide your list of top places into sections (in the table view sense) by country. This
will require a little bit different data structure in that MVC.

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 6 OF 6	
 	
 ASSIGNMENT IV: TOP PLACES

