
Assignment II:

Programmable Calculator
Objective

The goal of this assignment is to extend the CalculatorBrain from last lecture’s demo
to allow inputting variables into the calculator’s program and to show the user the steps
they have entered to get the result showing in the display (i.e. showing the
CalculatorBrain’s “program”). This involves using the id type, introspection,
Foundation classes, enumeration, and understanding properties: all things talked about
in class this week.

You will not be “walked through” this assignment line by line.

Next week’s assignment will build on this week’s so don’t fall behind!

This assignment must be submitted using the submit script (see the class website for
details) by the end of the day next Wednesday. You may submit it multiple times if you
wish. Only the last submission will be counted.

Be sure to check out the Hints section below!

Also, check out the latest additions to the Evaluation section to make sure you
understand what you are going to be evaluated on with this (and future) assignments.

Materials

• You should begin by taking your assignment from last week and adding the interface
and implementation of the CalculatorBrain API demonstrated in the last lecture
(program property, descriptionOfProgram: and runProgram:). This code is
downloadable from the class website, but it does not include the additions you were
required to make to last week’s walkthrough, so you’ll have to merge them in yourself.

• It is recommended that you make a copy of last week’s assignment before you start
modifying it for this week’s.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 1 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

http://www.stanford.edu/class/cs193p/cgi-bin/drupal/submissions
http://www.stanford.edu/class/cs193p/cgi-bin/drupal/submissions

Required Tasks

Your solution to this assignment must include properly functioning implementations
for the three public methods added to the CalculatorBrain in lecture. You may
change the internal implementations as necessary (though you almost certainly do not
want to change the implementation for the @property), but do not change the public
API for these (including whether a method is a class method or not):

! @property (readonly) id program;
! + (double)runProgram:(id)program;
! + (NSString *)descriptionOfProgram:(id)program;

Also, do not break any existing CalculatorBrain functionality with your new features
in this assignment.

1. Add the capability to your CalculatorBrain to accept variables as operands (in
addition to still accepting doubles as operands). You will need new public API in
your CalculatorBrain to support this.

A variable will be specified as an NSString object. To simplify your implementation,
you can ignore attempts to push a variable whose name is the same as an operation
(e.g. you can ignore an attempt to push a variable named “sqrt”).

The values of the variables will only be supplied when the “program” is “run.” You
must add a new version of the runProgram: class method with the following
signature ...

+ (double)runProgram:(id)program
 usingVariableValues:(NSDictionary *)variableValues;

The keys in the passed variableValues dictionary are NSString objects corresponding
to the names of variables used in the passed program, and the values in the dictionary
are NSNumber objects specifying the value of the corresponding variable (for this
assignment we will supply “test” values, see Required Task #3).

If there are variables in the specified program for which there are no values in the
specified NSDictionary, use a value of 0 for those variables when you run the
program. This should be the case if someone calls the original runProgram: method
(the one shown in the demo in class).

In addition, create another class method to get all the names of the variables used in a
given program (returned as an NSSet of NSString objects) ...

+ (NSSet *)variablesUsedInProgram:(id)program;

If the program has no variables return nil from this method (not an empty set).

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 2 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

2. Re-implement the descriptionOfProgram: method from the last lecture to display
the passed program in a more user-friendly manner. Specifically ...

a. It should display all single-operand operations using “function” notation. For
example, 10 sqrt should display as sqrt(10).

b. It should display all multi-operand operations using “infix” notation if
appropriate, else function notation. For example, 3 Enter 5 + should display as
3 + 5.

c. Any no-operand operations, like π, should appear unadorned. For example, π.

d. Variables (Required Task #1) should also appear unadorned. For example, x.

Any combination of operations, operands and variables should display properly.
Examples (E means “Enter key”) ...

a. 3 E 5 E 6 E 7 + * - should display as 3 - (5 * (6 + 7)) or an even cleaner
output would be 3 - 5 * (6 + 7).

b. 3 E 5 + sqrt should display as sqrt(3 + 5).

c. 3 sqrt sqrt should display as sqrt(sqrt(3)).

d. 3 E 5 sqrt + should display as 3 + sqrt(5).

e. π r r * * should display as π * (r * r) or, even better, π * r * r.

f. a a * b b * + sqrt would be, at best, sqrt(a * a + b * b).

As you can see, you will have to use parentheses in your output to correctly display the
program. For example, 3 E 5 + 6 * is not 3 + 5 * 6, it is (3 + 5) * 6. Try to keep
extraneous parentheses to a minimum though (see Hints).

It might be that there are multiple things on the stack. If so, separate them by
commas in the output with the top of the stack first, for example 3 E 5 E would
display as “5, 3”. 3 E 5 + 6 E 7 * 9 sqrt would be “sqrt(9), 6 * 7, 3 + 5”.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 3 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

3. Update the user-interface of your Calculator to test all of the above.

a. Your UI should already have a UILabel which shows what has been sent to the
brain. Change it to now always show the latest description of the program
currently in the CalculatorBrain using your descriptionOfProgram: method. It
should show the description without substituting variable values (obviously, since
descriptionOfProgram: does not take a variable value dictionary as an argument).

b. Add a few variable buttons (e.g, x, y, foo). These are buttons that push a variable
into the CalculatorBrain.

c. Change your calculator to update its display (as needed) by calling your new
runProgram:usingVariableValues: method. The variable values dictionary it
passes to this method should be a property in your Controller (let’s call it
“testVariableValues”).

d. Add a UILabel to your UI whose contents are determined by iterating through all
the variablesUsedInProgram: and displaying each with its current value from
testVariableValues. Example display: “x = 5 y = 4.8 foo = 0”.

e. Add a few different “test” buttons which set testVariableValues to some preset
testing values. One of them should set testVariableValues to nil. Don’t forget
to update the rest of your UI when you change testVariableValues by pressing
one of these test buttons. Make sure that your preset values are good edge-cases
for testing (we are intentionally not telling you what to use since part of good
programming is figuring out how to thoroughly test your application).

4. Add an Undo button to your calculator. Hitting Undo when the user is in the middle
of typing should take back the last digit or decimal point pressed until doing so would
clear the display entirely at which point it should show the result of running the
brain’s current program in the display (and now the user is clearly not in the middle of
typing, so take care of that). Hitting Undo when the user is not in the middle of typing
should remove the top item from the program stack in the brain and update the user-
interface.

This task can be implemented with 1 method in your Controller (of about 5-6 lines of
code, assuming you’ve factored out the updating of your user-interface into a single
method somewhere) and 1 method (with 1 line of code) in your Model. If it’s taking
much more than that, you might want to reconsider your approach.

5. Don’t let anything crash your program in CalculatorBrain. It should defend against
any value being passed through its API.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 4 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

Screenshots

Your UI absolutely, positively does NOT have to look like this. In fact, we hesitate to put
screen shots into homework assignments at all because we don’t want to stifle your
creativity in how you build your UI. However, in the past, students have complained that
they can’t visualize the Required Tasks by text description alone, so here is an example
screenshot of how your application might look.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 5 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

The display is
showing only the

evaluation of the top
of the stack (x + a).

Not showing x
(because it’s not in

the program).

Clicking one of these would
update both the bottom and the top
labels in this user-interface because it

changes the value of x, a and b.

Input:
3.25 E 6 + 14 * x a +

Input:
a a * b b * + sqrt

Hints

1. The NSMutableArray method replaceObjectAtIndex:withObject: might be useful to
you in this assignment. Note that you cannot call this method inside a for-in type of
enumeration (since you don’t have the index in that case): you’d need a for loop that is
iterating by index through the array.

2. It is possible to implement runProgram:usingVariableValues: without modifying the
method popOperandOffStack: at all. You don’t have to do it that way (this is only a
hint, after all) but it is possible to do it that way.

3. You will almost certainly want to use recursion to implement descriptionOfProgram:
(just like we did to implement runProgram:). You might find it useful to write yourself a
descriptionOfTopOfStack: method too (just like we wrote ourselves a
popOperandOffStack: method to help us implement runProgram:). If you find
recursion a challenge, think “simpler,” not “more complex.” Your
descriptionOfTopOfStack: method should be less than 20 lines of code and will be
very similar to popOperandOffStack:. The next hint will also help.

4. One of the things your descriptionOfProgram: method is going to need to know is
whether a given string on the stack is a two-operand operation, a single-operand
operation, a no-operand operation or a variable (because it gives a different description
for each of those kinds of things). Implementing some private helper method(s) to
determine this is probably a good idea. You could implement such a method with a lot
of if-thens, of course, but you might also think about whether NSSet (and its method
containsObject:) might be helpful.

5. You might find the private helper methods mentioned in Hint #4 useful in
distinguishing between variables and operations in your other methods as well. It’s
very likely that you’re going to want a + (BOOL)isOperation:(NSString *)operation
method.

6. It might be a good idea not to worry about extraneous parentheses in your
descriptionOfProgram: output at first, then, when you have it working, go back and
figure out how to suppress them in certain cases where you know they are going to be
redundant. As you’re thinking about this, at least consider handling the case of the
highest precedence operations in your CalculatorBrain where you clearly do not need
parentheses. Also think about the need for parentheses inside parentheses when doing
function notation (e.g. sqrt((5 + 3)) is ugly).

7. The NSDictionary class method dictionaryWithObjectsAndKeys: is great for
Required Task 3e.

8. As always, fewer lines of code is better than more lines of code. For example, the
changes to CalculatorBrain in this assignment can be done with way fewer than 100
lines of code (in fact, it can be done with half that). Even fewer in your Controller.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 6 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

Links

Most of the information you need is best found by searching in the documentation
through Xcode (see the Help menu there), but here are a few links to Apple
Documentation that you might find helpful. Get used to referring to this
documentation to figure out how to do things. No one expects anyone to memorize
every method in every object, so being facile with looking things up in the Apple
Documentation is key to mastering the iPhone Development Environment.

• Objective-C Primer

• Introduction to Objective-C

• NSObject Reference

• NSString Reference

• NSNumber Reference

• NSArray Reference

• NSMutableArray Reference

• NSDictionary Reference

• NSSet Reference

• NSMutableSet Reference

• NSMutableDictionary Reference

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 7 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html
http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/NSArray.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/NSArray.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSDictionary_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSDictionary_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSSet_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSSet_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSMutableSet_Class/Reference/NSMutableSet.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSMutableSet_Class/Reference/NSMutableSet.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSMutableDictionary_Class/Reference/Reference.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSMutableDictionary_Class/Reference/Reference.html

Evaluation

In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.

Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Your solution is difficult (or impossible) for someone reading the code to
understand due to lack of comments, poor variable/method names, poor solution
structure, etc.

• Assignment was turned in late (you get 3 late days per quarter, so use them wisely).

• Code is too lightly or too heavily commented.

• Code crashes.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 8 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

Extra Credit

1. Enhance your application to show the user error conditions like divide by zero, square
root of a negative number, and insufficient operands. One way to do this (and to get
more experience with using id) might be to have runProgram:usingVariableValues:
in CalculatorBrain return an id (instead of a double) which is an NSNumber with the
result or an NSString with the description of an error if it encounters one. Then
update your Controller to use introspection on the return value and display the
appropriate thing to the end-user.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 9 OF 9	
 	
 ASSIGNMENT I1: PROGRAMMABLE CALCULATOR

