
Assignment I: Calculator
Objective

This assignment has two parts.

The goal of  the first part of  the assignment is to recreate the demonstration given in the 
second lecture.  Not to worry, you will be given very detailed walk-through instructions 
in a separate document.  It is important, however, that you understand what you are 
doing with each step of  that walk-through because the second part of  the assignment 
(this document) is to add a couple of  extensions to your calculator which will require 
similar steps to those taken in the walk-through.

This assignment must be submitted using the submit script (see the class website for 
details) by the end of  the day next Wednesday.  You may submit it multiple times if  you 
wish. Only the last submission will be counted.  For example, it might be a good idea to 
go ahead and submit it after you have done the walk-through and gotten that part 
working.  If  you wait until the last minute to try to submit and you have problems with 
the submission script, you’ll likely have to use one of  your valuable late days.

Be sure to check out the Hints section below!

Materials

• Before you start this assignment, you will need to download and install the iOS SDK 
and Xcode 4 from http://developer.apple.com or using the App Store on Mac OSX.

It is critical that you get the SDK downloaded and functioning as early as possible in the 
week so that if  you have problems you will have a chance to talk to the CA’s and get 
help.  If  you wait until the weekend (or later!) and you cannot get the SDK downloaded 
and installed, it is unlikely you’ll finish this assignment on time.

• The walkthrough document for the first part of  the assignment can be found on the 
class website (in the same place you found this document).

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 1 OF 7	
 	
 ASSIGNMENT 1: CALCULATOR

http://www.stanford.edu/class/cs193p/cgi-bin/drupal/submissions
http://www.stanford.edu/class/cs193p/cgi-bin/drupal/submissions
http://developer.apple.com
http://developer.apple.com


Required Tasks

1. Follow the walk-through instructions (separate document) to build and run the 
calculator in the iPhone Simulator.  Do not proceed to the next steps unless your 
calculator functions as expected and builds without warnings or errors.

2. Your calculator already works with floating point numbers (e.g. if  you touch the 
buttons 3 Enter 4 /  it will properly show the resulting value of  0.75), however, 
there is no way for the user to enter a floating point number.  Remedy this.  Allow only 
legal floating point numbers to be entered (e.g. “192.168.0.1” is not a legal floating 
point number).  Don’t worry too much about precision in this assignment.

3. Add the following 4 operation buttons:

• sin : calculates the sine of  the top operand on the stack.

• cos : calculates the cosine of  the top operand on the stack.

• sqrt : calculates the square root of  the top operand on the stack.

• π:  calculates (well, conjures up) the value of  π.  Examples: 3 π * should put three 
times the value of  π into the display on your calculator, so should 3 Enter π *, 
so should π 3 *.  Perhaps unexpectedly, π Enter 3 * + would result in 4 times π 
being shown.  You should understand why this is the case.  NOTE: This 
required task is to add π as an operation (an operation which takes no arguments 
off  of  the operand stack), not a new way of  entering an operand into the display.

4. Add a new text label (UILabel) to your user-interface which shows everything that 
has been sent to the brain (separated by spaces).  For example, if  the user has entered 
6.3 Enter 5 + 2 *, this new text label would show 6.3 5 + 2 *.  A good place 
to put this label is to make it a thin strip above the display text label.  Don’t forget to 
have the C button clear this too.  All of  the code for this task should be in your 
Controller (no changes to your Model are required for this one).  You do not have to 
display an unlimited number of  operations and operands, just a reasonable amount.

5. Add a “C” button that clears everything (for example, the display in your View, the 
operand stack in your Model, any state you maintain in your Controller, etc.).  Make 
sure 3 7 C 5 results in 5 showing in the display.  You will have to add API to your 
Model to support this feature.

6. If  the user performs an operation for which he or she has not entered enough 
operands, use zero as the missing operand(s) (the code from the walkthrough does this 
already, so there is nothing to do for this task, it is just a clarification of  what is 
required).  Protect against invalid operands though (e.g. divide by zero).

7. Avoiding the problems listed in the Evaluation section below is part of  the 
required tasks of  every assignment.  This list grows as the quarter progresses, so be 
sure to check it again with each assignment.

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 2 OF 7	
 	
 ASSIGNMENT 1: CALCULATOR



Hints

These hints are not required tasks.  They are completely optional.  Following them may 
make the assignment a little easier (no guarantees though!).

1. There’s an NSString method which you might find quite useful for doing the floating 
point part of  this assignment.  It’s called rangeOfString:  Check it out in the 
documentation.  It returns an NSRange which is just a normal C struct which you can 
access using normal C dot notation.  For example, consider the following code:

NSString *greeting = @"Hello There Joe, how are ya?";
NSRange range = [greeting rangeOfString:@"Bob"];
if (range.location == NSNotFound) { … /* no Bob */ }

2. You might also find the methods in NSString that start with the word “substring” or 
“has” to be valuable.

3. This is the C language, so non-object comparisons use == (double equals), not = (single 
equals).  A single equals means “assignment.”  A double equals means “test for 
equality.”  See the last line of  code above.  Object comparisons for equality usually use 
the isEqual: method.  Comparing objects using == is dangerous.  == only checks to see 
if  the two pointers are the same (i.e. they point to exactly the same instance of  an 
object).  It does not check to see if  two different objects are semantically the same (e.g. 
two NSStrings that contain the same characters).  isEqualToString: is just like 
isEqual:, but it is implemented only by NSString.

3. Don’t forget that NSString constants start with @.  See the greeting variable in the 
code fragment above.  Constants without out the @ (e.g. “hello”) are const char * 
and are rarely used in iOS.

4. Be careful of  the case where the user starts off  entering a new number by pressing the 
decimal point, e.g., they want to enter the number “.5” into their calculator.  Handle 
this case properly.

5. sin() and cos() are functions in the normal BSD Unix C library. Feel free to use them 
to calculate sine and cosine.

6. Economy is valuable in coding: the easiest way to ensure a bug-free line of  code is not 
to write the line of  code at all.  This assignment requires very, very few lines of  code so 
if  you find yourself  writing dozens of  lines of  code, you are on the wrong track.

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 3 OF 7	
 	
 ASSIGNMENT 1: CALCULATOR



Links

Most of  the information you need is best found by searching in the documentation 
through Xcode (see the Help menu there), but here are a few links to Apple 
Conceptual Documentation that you might find helpful.  Remember that we are going 
to go much more in-depth about Objective-C and the rest of  the development 
environment next week, so don’t feel the need to absorb these documents in their 
entirety.

• Objective-C Primer

• Introduction to Objective-C

• NSString Reference

• NSMutableArray Reference

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 4 OF 7	
 	
 ASSIGNMENT 1: CALCULATOR

http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html
http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/NSMutableArray.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/NSMutableArray.html


Evaluation

In all of  the assignments this quarter, writing quality code that builds without warnings 
or errors, and then testing the resulting application and iterating until it functions 
properly is the goal.

Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Your solution is difficult (or impossible) for someone reading the code to 
understand due to lack of  comments, poor variable/method names, poor solution 
structure, etc.

• Assignment was turned in late (you get 3 late days per quarter, so use them wisely).

Often students ask “how much commenting of  my code do I need to do?”  The answer 
is that your code must be easily and completely understandable by anyone reading it.  
You can assume that the reader knows the SDK, but should not assume that they 
already know the (or a) solution to the problem.

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 5 OF 7	
 	
 ASSIGNMENT 1: CALCULATOR



Extra Credit

Here are a few ideas for some more things you could do to get some more experience 
with the SDK at this point in the game.

1. Implement a “backspace” button for the user to press if  they hit the wrong digit button.  
This is not intended to be “undo,” so if  they hit the wrong operation button, they are 
out of  luck!  It’s up to you to decided how to handle the case where they backspace 
away the entire number they are in the middle of  entering, but having the display go 
completely blank is probably not very user-friendly.

2. When the user hits an operation button, put an = on the end of  the text label that is 
showing what was sent to the brain (required task #4). Thus the user will be able to tell 
whether the number in the Calculator’s display is the result of  a calculation or a 
number that the user has just entered.

3. Add a +/- operation which changes the sign of  the number in the display.  Be careful 
with this one.  If  the user is in the middle of  entering a number, you probably want to 
change the sign of  that number and let them continue entering it, not force an 
enterPressed like other operations do.  But if  they are not in the middle of  entering a 
number, then it would work just like any other single-operand operation (e.g. sqrt).

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 6 OF 7	
 	
 ASSIGNMENT 1: CALCULATOR



Screen Shots

This screen shot is for example purposes only.  Note carefully that this section of  the 
assignment writeup is not under the Required Tasks section.  In fact, screen shots like this 
are included in assignment write-ups only at the request of  past students and over 
objections by the teaching staff.  Do not let screen shots like this stifle your creativity!

CS193P IPHONE APPLICATION DEVELOPMENT	
 	
 FALL 2011

PAGE 7 OF 7	
 	
 ASSIGNMENT 1: CALCULATOR

History of things sent to 
the CalculatorBrain.
(Required Task #4)

A couple of extra operations 
were thrown in for fun!

The input in this example was π 1.8 Enter Enter * * sqrt.

Backspace.
Extra Credit #1.

Change Sign.
Extra Credit #3.

=  on the end is
Extra Credit #2.

Decimal Point.
(Required Task #2)

Added Operations.
(Required Task #3)

Clear Button.
(Required Task #5)


