
Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 8
Object Serialization, Threading

Manu Kumar
sneaker@stanford.edu

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 2 Handouts for today!
– #19: Threading
– #20: Threading 2

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– Continued with Repaint

• Repaint example code walkthrough
• Erasing

– Mouse Tracking
• DotPanel example code walkthrough

– Advanced Drawing
• Region based drawing, Blinking, Smart Repaint

• Assigned Work Reminder
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Lecture-Homework mapping revisited

• HW #2 will use
– OOP concepts

• Inheritance, overriding, polymorphism
• Abstract classes

– Drawing in Java
• Layouts
• paintComponent()

– Event handling
• Anonymous Inner classes

– Repaint
– Mouse Tracking
– Advanced Drawing
– Object Serialization (Today)

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Today

• Object Serialization
– Cloning

• Not Dolly, but Java Objects ☺
– Serializing

• Introduction to Threading
– Motivation
– Java threads

• Simple Thread Example
• Threading 2

– Race Conditions
– Locking
– Synchronized Method

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Objects and Serialization (Handout #18)

• Equals revisited
– a == b tests for pointer equality only

• i.e. pointer a and b point to the same
location/object

• This is called “shallow semantics”
– boolean Object.equals(Object other)

• Defined in the Object class
– Default implementation does a == b test (shallow

semantics)

• May override to do “deep comparison”
– Example: String.equals()

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Calling equals()

{
String a = “hello”;
String b = “hello”;

(a == b) Æ false
(a.equals(b)) Æ true
(b.equals(a)) Æ true

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Equals strategy

• boolean equals(Object other)
– Take Object, return boolean

• Must have exact prototype for overriding to work
– Return true on (this == other)
– Use (other instanceof Foo) too test class of

other
• False if not same class

– Otherwise do a field-by-field comparison of
this and other

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Student equals() example

// in Student class...
boolean equals(Object obj) {

if (obj == this) return(true);
if (!(obj instanceof Student)) return(false);
Student other = (Student)obj;
return(other.units == units)

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Cloning

• Used to create a copy of an object
– Not just another pointer to the same object
– Cloned object has it’s own memory space

• Lets say Foo b = a.clone();
• a == b will return false
• a.equals(b) will return true!

• Copied object has same state
– But its own memory

• We use this in HW#2 for cut-copy-paste!

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Cloneable interface

• Used as a marker to indicate that the class
implements the clone() method
– Not compiler enforced
– Object.clone() is pre-built

• Create a new instance of the right class
• Assign all fields over with ‘=‘ semantics

• Object.clone() will do above default
behavior
– If class implements the cloneable interface
– Otherwise, it will through an exception

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Implementing clone()

• Implement the Cloneable interface
– Call the super classes clone method first to

copy structure
• copy = (Class) super.clone()

– Copy fields where a simple ‘=‘ is not deep
enough

• Example, arrays, arraylists, objects

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Alternative approaches

• Copy Constructor
– MyClass(MyClass myObject)

• Construct a new instance of MyClass based on the state of
MyObject

• “Factory” method
– Static method that makes new instances

• static MyClass newInstance(MyClass myObject)
• May use constructor internally

• Advantage
– Simpler than Object.clone(), no new concepts

• Disadvantage
– Client must know the class of the Object

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Eq Code example

// Eq.java

/*
Demonstrates a simple class that defines equals and clone.

*/
public class Eq implements Cloneable {

private int a;
private int[] values;

public Eq(int init) {
a = init;
values = new int[10];

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Eq Code example: equals

/*
Does a "deep" compare of this vs. the other object.
*/
public boolean equals(Object other) {

if (other == this) return(true);
if (!(other instanceof Eq)) return(false);

Eq e = (Eq) other;

// now test if this vs. e
if (a != e.a) return(false);

if (values.length != e.values.length) return(false);
for (int i=0; i<values.length; i++) {

if (values[i] != e.values[i]) return(false);
}
return(true);

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Eq Code example: clone()

/*
Returns a deep copy of the object.
*/
public Object clone() {

try {
// first, this creats the new memory and does '=' on all fields
Eq copy = (Eq)super.clone();

// copy the array over -- arrays respond to clone() themselves
copy.values = (int[]) values.clone();
return(copy);

}
catch (CloneNotSupportedException e) {

return(null);
}

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Eq Code example

public static void main(String[] args) {
Eq x = new Eq(1);
Eq y = new Eq(2);
Eq z = (Eq) x.clone();

System.out.println("x == z" + (x==z)); // false
System.out.println("x.equals(z)" + (x.equals(z))); // true

}
}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Serialization

• Motivation
– A lot of code involves boring conversion from a file to

memory
• Write code in 106A to translate by hand
• HW#1 read ASCII file and required parsing

– This is a common problem!
• Java’s answer:

– Serialization
• Object know how to write themselves out to disk and to read

themselves back from disk into memory!

• We use this in HW#2 to load and save!

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Serialization / Archiving

• Objects have state in memory
• Serialization is the process of conversting

objects into a streamed state (Network,
Disk)
– No notion of an address space
– No pointers

• Serialization is also called
– Flattening, Streaming, Dehydrate (rehydrate =

read), Archiving

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

How it works?

• To write out an object
– ObjectOutputStream out;
– out.writeObject(obj)

• To read that object back in
– ObjectInputStream in;
– obj = in.readObject();

• Must be of the same type
– class and version

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Java: Automatic Serialization

• Serializable Interface
– By implementing this interface a class declares that is it willing to

be read/written by automatic serialization machinery
• Automatic Writing

– System knows how to recursively write out the state of an object
– Recursively follows pointers and writes out those objects too!
– Can handle most built in types

• int, array, Point etc.
• “transient” keyword to mark a field that should not be

serialized
– Transient fields are returned as null on reading

• Override readObject() and writeObject() for
customizations

• Versioning
– Can detect version changes

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Circularity: not an issue

• Serialization machinery will take circular
references into account and do the right
thing!

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Dot example

• Build on DotPanel example!
• saveSerial(File f)

– Given a file, write the data model to it with Java
serialization.

– Makes an Point[] array of points and writes it which
avoids the bother of iteration.

• We use an array instead of the ArrayList to avoid requiring a
1.2 VM to read the file, although maybe the ArrayList would
have been fine

• loadSerial(File f)
– Inverse of saveSerial.
– Reads an Point[] array of Points, and adds them to

our data model.

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Dot example code

public void saveSerial(File file) {
try {

ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream(file));

// Use the standard collection -> array util
// (the Point[0] tells it what type of array to return)
Point[] points = (Point[]) dots.toArray(new Point[0]);

out.writeObject(points); // serialization!

out.close(); // polite to close on the way out
setDirty(false);

}
catch (Exception e) {

e.printStackTrace();
}

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Dot example code

private void loadSerial(File file) {
try {

ObjectInputStream in = new ObjectInputStream(new
FileInputStream(file));

// Read in the object -- the CT type should be exactly as it was written
// -- Point[] in this case.
// Transient fields would be null.
Point[] points = (Point[])in.readObject();
for (int i=0; i<points.length; i++) {

dots.add(points[i]);
}

in.close(); // polite to close on the way out
setDirty(false);

} catch (Exception e) {
e.printStackTrace();

}
}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

HW#2 note

• CS193J classes for serialization
– shield you from the exceptions, but otherwise behave like

ObjectOutputStream and ObjectInputStream

SimpleObjectWriter w;
SimpleObjectWriter w =

SimpleObjectWriter.openFileForWriting(filename);
w.writeObject(<object>) -- write an array or object (Point[] in above

example)
w.close()

SimpleObjectReader r;
SimpleObjectReader r =

SimpleObjectReader.openFileForReading(filename);
obj = r.readObject() -- returns the object written -- cast to what it is

(Point [] in above example)
r.close()

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Threading (Handout #19)

• Introduction to Threading
– Motivation
– Java threads

• Simple Thread Example

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Faster Computers

• Why are computers today faster than 10 year
ago?
– Process improvements

• Chips are smaller and run faster
– Superscalar pipelining parallelism techniques

• Doing more than one thing at a time from the one instruction
stream

• Instruction Level Parallelism (ILP)
– There is a limit to the amount of parallelism that can

be extracted from a single instruction stream
• About 3x to 4x
• We are well within the diminishing returns region here

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Hardware Trends

• Moore’s Law
– Moore's Law states that the number of of

transistors on a microchip will double every 18
months (Promulgated by Gordon Moore in
1965)

– The density of transistors we can fit per
square mm seems to double every 18 months

• Transistors become smaller and smaller

• What should we do with all these
transistors??

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Moore’s Law at work…

Source: Intel Corporation, http://www.intel.com/research/silicon/mooreslaw.htm

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

In Numbers…

Source: Intel Corporation, http://www.intel.com/research/silicon/mooreslaw.htm

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

In Dollars…

• The cost of a chip is related to its size in square mm
– Cost is a super linear function – doubling the size more than

doubles the cost

• Recent processors

217 mm242 M transistors0.18 umPentium 42001

184 mm222 M transistors0.25 umAMD Athlon1997

128 mm25.5 M transistors035umPentium MMX1995

79 mm21.2M transistors1.0um4861989

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

What can we use transistors for?

• More cache
• More functional units

– Instruction Level Parallelism
• Multiple threads

• In 2002, Intel speculated that they could
build a 1 billion transistor Itanium chip
made of 4 Itanium cores and a huge
shared cache

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Hardware vs. Software

• Writing single threaded software is easier
– Therefore we have used hardware to drive the

performance of software
• Hardware is however hitting a limit

– Not on the number of transistors yet
• But on how much parallelism it can use based on

single-threaded model code
– Programmers must start writing explicitly

parallel code in order to take benefit of the
improvements in hardware!

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Hardware concurrency trends

• Multiple CPU’s
– Cache coherency must make expensive off-chip trip

• Multiple cores on a single chip
– Can share on-chip cache
– Good way to use up more transistors without doing more design

• Simultaneous Multi-Threading (SMT)
– One core with multiple sets of registers

• Shifts between one thread and another quickly
• Hide latency by overlapping a few active threads

– HyperThreading (Intel Pentium 4 processor)
• By 2005 – 2-4 cores with each being 2-4 way multi-

threaded
– Appears to have 4-16 CPUs

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Software concurrency

• Processes
– Unix-style concurrency
– The ability to run multiple applications at once

• Example: Unix processes launched from a shell,
piped to another process

– Separate address space
– Cooperate using read/write streams (pipes)
– Synchronization is easy

• Since there is no shared address space

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Threads

• The ability to do multiple things at once
within the same application
– Finer granularity of concurrency

• Lightweight
– Easy to create and destroy

• Shared address space
– Can share memory variables directly
– May require more complex synchronization

logic because of shared address space

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Advantages of threads…
• Use multiple processors

– Code is partitioned in order to be able to use n
processors at once

• This is not easy to do! But Moore’s Law may force us in this
direction

• Hide network/disk latency
– While one thread is waiting for something, run the

others
– Dramatic improvements even with a single CPU

• Need to efficiently block the connections that are waiting,
while doing useful work with the data that has arrived

– Writing good network codes relies on concurrency!
• Homework #3b will be a good example of this

• Keeping the GUI responsive
– Separate worker threads from GUI thread

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Why Concurrency is a Hard Problem

• No language construct to alleviate the problem
– Memory management can be solved by a garbage collector, no

analog for concurrency
• Counter-intuitive

– Concurrency bugs are hard to spot in the code
– Difficult to get into the concurrency mindset

• No fixed programmer recipe either
• Client may need to know the internal model to use it

correctly
– Hard to pass the Clueless-Client test

• Concurrency bugs are random
– Show up rarely, often not deterministic/reproducible easily
– Rule of thumb: if something bizarre happens try and note the

current state as well as possible

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Java Threads

• Java includes built-in support for threading!
– Other languages have threads bolted-on to an

existing structure
• VM transparently maps threads in Java to OS

threads
– Allows threads in Java to take advantage of hardware

and operating system level advancements
– Keeps track of threads and schedules them to get

CPU time
– Scheduling may be pre-emptive or cooperative

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Current Running Thread

• “Thread of control” or “Running thread”
– The thread which is currently executing some

statements
• A thread of execution

– Executing statements, sending messages
– Has its own stack, separate from other

threads
• A message send sends the current

running thread over to execute the code in
the receiver

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

An idiom explained even more!

• Remember:
– public static void main(String[] args)

• Well…
– When you run a Java program, the VM

creates a new thread and then sends the
main(String[] args) message to the class to be
run!

– Therefore, there is ALWAYS at least one
running thread in existence!

• We can create more threads which can run
concurrently

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Java Thread class

• A Thread is just another object in Java
– It has an address, responds to messages etc.
– Class Thread

• in the default java.lang package

• A Thread object in Java is a token which
represents a thread of control in the VM
– We send messages to the Thread object; the

VM interprets these messages and does the
appropriate operations on the underlying
threads in the OS

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Creating Threads in Java

• Two approaches
– Subclassing Thread

• Subclass java.lang.Thread
• Override the run() method

– Implementing Runnable
• Implement the runnable interface
• Provide an implementation for the run() method
• Pass the runnable object into the constructor of a

newThread Object

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Why two approaches?

• Remember: Java supports only single-
inheritance
– If you need to extend another class, then

cannot extend thread at the same time
• Must use the Runnable pattern

• Two are equivalent
– Whether you subclass Thread or implement

Runnable, the resulting thread is the same
– Runnable pattern just gives more flexibility

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Thread Lifecycle

• Steps in the lifecycle of a thread
– Instantiate new Thread Object (thread)

• Subclass of Thread
• Thread with a runnable object passed in to constructor

– Call thread.start()
• This begins execution of the run() method

– Thread finishes or exits when it exits the run() method
• Idiom – run() method will have some form of loop in it!

– Optional - thread.sleep or thread.yield()
– Thread.stop(), thread.suspend() and thread.resume()

are deprecated!
• See

http://java.sun.com/j2se/1.4.1/docs/guide/misc/threadPrimitiv
eDeprecation.html

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Thread.currentThread()

• Static utility method in the Thread class
– Returns a pointer to the Thread object that

represents the current thread of control
• Example

int i = 6;
int sum = 7 + 12; // regular computation

Thread me = Thread.currentThread();
// "me" is the Thread object that represents our thread of
// control (the thread that computed the sum above)

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Joining

• Used when a thread wants to wait for
another thread to complete its run()
– Sent the thread2.join() message

• Causes the current running thread to block
efficiently until thread2 finishes its run() method

• Must catch InterruptedException
– We will talk about exceptions more later, for now just

treat it as an idiom

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Join Example

// create a thread
Runnable runner = new Runnable() {

public void run() {
// do something in a loop

};
Thread t = new Thread(runnner);

// start a thread
t.start();

// at this point, two threads may be running -- me and t
// wait for t to complete its run
try {

t.join();
}
catch (InterruptedException ignored) {}
// now t is done (or we were interrupted)

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Simple Thread Example

/*
Demonstrates creating a couple worker threads, running them,
and waiting for them to finish.

Threads respond to a getName() method, which returns a string
like "Thread-1" which is handy for debugging.

*/
public class Worker1 extends Thread {

public void run() {
long sum = 0;
for (int i=0; i<100000; i++) {

sum = sum + i; // do some work

// every n iterations, print an update
// (a bitwise & would be faster -- mod is slow)
if (i%10000 == 0) {

System.out.println(getName() + " " + i);
}

}
}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Simple Thread Example

public static void main(String[] args) {
Worker1 a = new Worker1();
Worker1 b = new Worker1();

System.out.println("Starting...");
a.start();
b.start();

// The current running thread (executing main()) blocks
// until both workers have finished
try {

a.join();
b.join();

}
catch (Exception ignored) {}

System.out.println("All done");
}

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Simple Thread Example Output
Starting...

Thread-0 0
Thread-1 0
Thread-0 10000
Thread-0 20000
Thread-1 10000
Thread-0 30000
Thread-1 20000
Thread-0 40000
Thread-1 30000
Thread-0 50000
Thread-1 40000
Thread-0 60000
Thread-1 50000
Thread-0 70000
Thread-1 60000
Thread-0 80000
Thread-0 90000
Thread-1 70000
Thread-1 80000
Thread-1 90000
All done

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Threading 2 (Handout #20)

• Two Threading Challenges
– Mutual Exclusion

• Keeping the threads from interfering with each
other

• Worry about memory shared by multiple threads
– Cooperation

• Get threads to cooperate
– Typically centers on handing information from one thread

to the other, or signaling one thread that the other thread
has finished doing something

• Done using join/wait/notify

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Critical Section

• A section of code that causes problems if
two or more threads are executing it at the
same time
– Typically as a result of shared memory that

both thread may be reading or writing
• Race Condition

– When two or more threads enter a critical
section, they are supposed to be in a race
condition

• Both threads want to execute the code at the same
time, but if they do then bad things will happen

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Race Condition Example

class Pair {
private int a, b;

public Pair() {
a = 0;
b = 0;

}
// Returns the sum of a and b. (reader)
public int sum() {

return(a+b);
}
// Increments both a and b. (writer)
public void inc() {

a++;
b++;

}
}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Reader/Writer Conflict

• Case
– thread1 runs inc(), while thread2 runs sum()

• thread2 could get an incorrect value if inc() is half way done
• This happens because the lines of sum() and inc() interleave

• Note
– Even a++ and b++ are not atomic statements

• Therefore, interleaving can happen at a scale finer than a
single statement!

• a++ is really three steps: read a, increment a, write a
– Java guarantees 4-byte reads and writes will be

atomic
– This is only a problem if the two threads are touching

the same object and therefore the same piece of
memory!

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Writer/Writer Conflict

• Case
– thread1 runs inc() while thread2 runs inc() on

the same object
• The two inc()’s can interleave in order to leave the

object in an inconsistent state

• Again
– a++ is not atomic and can interleave with

another a++ to produce the wrong result
– This is true in most languages

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Heisenbugs

• Random Interleave – hard to observe
– Race conditions depend on having two or more

threads “interleaving” their execution in just the right
way to exhibit the bug

• Happens rarely and randomly, but it happens
– Interleaves are random

• Depending on system load and number of processors
• More likely to observe issue on multi-processor systems

• Tracking down concurrency bugs can be hard
– Reproducing a concurrency bug reliable is itself often

hard
– Need to study the patterns and use theory in order to

pre-emptively address the issue

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Java Locks

• Java includes built-in support for dealing
with concurrency issues
– Includes keywords in order to mark critical

sections
– Includes object locks in order to limit access

to a single thread when necessary
• Java designed to encourage use of

threading and concurrency
– Provides the tools needed in order to

minimize concurrency pitfalls

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Object Lock and Synchronized keyword

• Every Java Object has as lock associated with it
• A “synchronized” keyword respects the lock of

the receiver object
– For a thread to execute a synchronized method

against a receiver, it must first obtain the lock of the
receiver

– The lock is released when the method exits
– If the lock is held by another thread, the calling thread

blocks (efficiently) till the other thread exits and the
lock is available

– Multiple threads therefore take turns on who can
execute against the receiver

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Receiver Lock

• The lock is in the receiver object
– Provides mutual exclusion mechanism for

multiple threads sending messages to that
object

– Other objects have their own lock
• If a method is not sychronized

– The thread will not acquire the lock before
executing the method

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Sychronized Method Picture

synch a() {
 --
 --
}

ivar

ivar

thread run {
 --
 --
}

synchronized method --
acquire object lock

release object lock

thread run {
 --
 --
}

block, waiting for
object lock

object lock

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

/*
A simple class that demonstrates using the 'synchronized'
keyword so that multiple threads may send it messages.
The class stores two ints, a and b; sum() returns
their sum, and inc() increments both numbers.

<p>
The sum() and incr() methods are "critical sections" --
they compute the wrong thing if run by multiple threads
at the same time. The sum() and inc() methods are declared
"synchronized" -- they respect the lock in the receiver object.
*/
class Pair {

private int a, b;

public Pair() {
a = 0;
b = 0;

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

// Returns the sum of a and b. (reader)
// Should always return an even number.
public synchronized int sum() {

return(a+b);
}
// Increments both a and b. (writer)
public synchronized void inc() {

a++;
b++;

}
}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

/*
A simple worker subclass of Thread.
In its run(), sends 1000 inc() messages
to its Pair object.

*/
class PairWorker extends Thread {

public final int COUNT = 1000;
private Pair pair;
// Ctor takes a pointer to the pair we use
public PairWorker(Pair pair) {

this.pair = pair;
}
// Send many inc() messages to our pair
public void run() {

for (int i=0; i<COUNT; i++) {
pair.inc();

}
}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

/*
Test main -- Create a Pair and 3 workers.
Start the 3 workers -- they do their run() --
and wait for the workers to finish.
*/
public static void main(String args[]) {

Pair pair = new Pair();
PairWorker w1 = new PairWorker(pair);
PairWorker w2 = new PairWorker(pair);
PairWorker w3 = new PairWorker(pair);
w1.start();
w2.start();
w3.start();
// the 3 workers are running
// all sending messages to the same object

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

// we block until the workers complete
try {

w1.join();
w2.join();
w3.join();

}
catch (InterruptedException ignored) {}

System.out.println("Final sum:" + pair.sum()); // should be 6000
/*
If sum()/inc() were not synchronized, the result would
be 6000 in some cases, and other times random values
like 5979 due to the writer/writer conflicts of multiple
threads trying to execute inc() on an object at the same time.

*/
}

}

Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Summary

• Today
– Object Serialization

• Cloning and Serializing
– Introduction to Threading

• Motivation
• Java threads

– Simple Thread Example
– Threading 2

• Race Conditions
• Locking
• Synchronized Methods

• Assigned Work Reminder
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003
• Start no later than TODAY!

	CS193J: Programming in JavaSummer Quarter 2003Lecture 8Object Serialization, Threading
	Handouts
	Recap
	Lecture-Homework mapping revisited
	Today
	Objects and Serialization (Handout #18)
	Calling equals()
	Equals strategy
	Student equals() example
	Cloning
	Cloneable interface
	Implementing clone()
	Alternative approaches
	Eq Code example
	Eq Code example: equals
	Eq Code example: clone()
	Eq Code example
	Serialization
	Serialization / Archiving
	How it works?
	Java: Automatic Serialization
	Circularity: not an issue
	Dot example
	Dot example code
	Dot example code
	HW#2 note
	Threading (Handout #19)
	Faster Computers
	Hardware Trends
	Moore’s Law at work…
	In Numbers…
	In Dollars…
	What can we use transistors for?
	Hardware vs. Software
	Hardware concurrency trends
	Software concurrency
	Threads
	Advantages of threads…
	Why Concurrency is a Hard Problem
	Java Threads
	Current Running Thread
	An idiom explained even more!
	Java Thread class
	Creating Threads in Java
	Why two approaches?
	Thread Lifecycle
	Thread.currentThread()
	Joining
	Join Example
	Simple Thread Example
	Simple Thread Example
	Simple Thread Example Output
	Threading 2 (Handout #20)
	Critical Section
	Race Condition Example
	Reader/Writer Conflict
	Writer/Writer Conflict
	Heisenbugs
	Java Locks
	Object Lock and Synchronized keyword
	Receiver Lock
	Sychronized Method Picture
	Synchronized Method Example
	Synchronized Method Example
	Synchronized Method Example
	Synchronized Method Example
	Synchronized Method Example
	Summary

