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Handouts

• 2 Handouts for today!
– #19: Threading
– #20: Threading 2
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Recap

• Last Time
– Continued with Repaint

• Repaint example code walkthrough
• Erasing

– Mouse Tracking
• DotPanel example code walkthrough

– Advanced Drawing
• Region based drawing, Blinking, Smart Repaint

• Assigned Work Reminder
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003
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Lecture-Homework mapping revisited

• HW #2 will use
– OOP concepts

• Inheritance, overriding, polymorphism
• Abstract classes

– Drawing in Java
• Layouts
• paintComponent()

– Event handling
• Anonymous Inner classes

– Repaint
– Mouse Tracking 
– Advanced Drawing
– Object Serialization (Today)
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Today

• Object Serialization
– Cloning

• Not Dolly, but Java Objects ☺
– Serializing

• Introduction to Threading
– Motivation
– Java threads

• Simple Thread Example
• Threading 2

– Race Conditions
– Locking
– Synchronized Method
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Objects and Serialization (Handout #18)

• Equals revisited
– a == b tests for pointer equality only

• i.e. pointer a and b point to the same 
location/object

• This is called “shallow semantics”
– boolean Object.equals(Object other)

• Defined in the Object class
– Default implementation does a == b test (shallow 

semantics)

• May override to do “deep comparison”
– Example: String.equals()
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Calling equals()

{
String a = “hello”;
String b = “hello”;

(a == b) Æ false
(a.equals(b)) Æ true
(b.equals(a)) Æ true

}
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Equals strategy

• boolean equals(Object other)
– Take Object, return boolean

• Must have exact prototype for overriding to work
– Return true on (this == other)
– Use (other instanceof Foo) too test class of 

other
• False if not same class

– Otherwise do a field-by-field comparison of 
this and other
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Student equals() example

// in Student class...
boolean equals(Object obj) {

if (obj == this) return(true);
if (!(obj instanceof Student)) return(false);
Student other = (Student)obj;
return(other.units == units)

}
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Cloning

• Used to create a copy of an object
– Not just another pointer to the same object
– Cloned object has it’s own memory space

• Lets say Foo b = a.clone();
• a == b will return false
• a.equals(b) will return true!

• Copied object has same state
– But its own memory

• We use this in HW#2 for cut-copy-paste!
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Cloneable interface

• Used as a marker to indicate that the class 
implements the clone() method
– Not compiler enforced
– Object.clone() is pre-built

• Create a new instance of the right class
• Assign all fields over with ‘=‘ semantics

• Object.clone() will do above default 
behavior
– If class implements the cloneable interface
– Otherwise, it will through an exception
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Implementing clone()

• Implement the Cloneable interface
– Call the super classes clone method first to 

copy structure
• copy = (Class) super.clone()

– Copy fields where a simple ‘=‘ is not deep 
enough

• Example, arrays, arraylists, objects
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Alternative approaches

• Copy Constructor
– MyClass(MyClass myObject)

• Construct a new instance of MyClass based on the state of 
MyObject

• “Factory” method
– Static method that makes new instances

• static MyClass newInstance(MyClass myObject)
• May use constructor internally

• Advantage
– Simpler than Object.clone(), no new concepts

• Disadvantage
– Client must know the class of the Object
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Eq Code example

// Eq.java

/*
Demonstrates a simple class that defines equals and clone.

*/
public class Eq implements Cloneable {

private int a;
private int[] values;

public Eq(int init) {
a = init;
values = new int[10];

}
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Eq Code example: equals

/*
Does a "deep" compare of this vs. the other object.
*/
public boolean equals(Object other) {

if (other == this) return(true);
if (!(other instanceof Eq)) return(false);

Eq e = (Eq) other;

// now test if this vs. e
if (a != e.a) return(false);

if (values.length != e.values.length) return(false);
for (int i=0; i<values.length; i++) {

if (values[i] != e.values[i]) return(false);
}
return(true);

}
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Eq Code example: clone()

/*
Returns a deep copy of the object.
*/
public Object clone() {

try {
// first, this creats the new memory and does '=' on all fields
Eq copy = (Eq)super.clone();

// copy the array over -- arrays respond to clone() themselves
copy.values = (int[]) values.clone();
return(copy);

}
catch (CloneNotSupportedException e) {

return(null);
}

}
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Eq Code example

public static void main(String[] args) {
Eq x = new Eq(1);
Eq y = new Eq(2);
Eq z = (Eq) x.clone();

System.out.println("x == z" + (x==z)); // false
System.out.println("x.equals(z)" + (x.equals(z))); // true

}
}
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Serialization

• Motivation
– A lot of code involves boring conversion from a file to 

memory
• Write code in 106A to translate by hand
• HW#1 read ASCII file and required parsing

– This is a common problem!
• Java’s answer:

– Serialization
• Object know how to write themselves out to disk and to read 

themselves back from disk into memory!

• We use this in HW#2 to load and save!
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Serialization / Archiving

• Objects have state in memory
• Serialization is the process of conversting

objects into a streamed state (Network, 
Disk)
– No notion of an address space
– No pointers

• Serialization is also called
– Flattening, Streaming, Dehydrate (rehydrate = 

read), Archiving
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How it works?

• To write out an object
– ObjectOutputStream out;
– out.writeObject(obj)

• To read that object back in
– ObjectInputStream in;
– obj = in.readObject();

• Must be of the same type
– class and version
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Java: Automatic Serialization

• Serializable Interface
– By implementing this interface a class declares that is it willing to 

be read/written by automatic serialization machinery
• Automatic Writing

– System knows how to recursively write out the state of an object
– Recursively follows pointers and writes out those objects too!
– Can handle most built in types

• int, array, Point etc.
• “transient” keyword to mark a field that should not be 

serialized
– Transient fields are returned as null on reading

• Override readObject() and writeObject() for 
customizations

• Versioning
– Can detect version changes
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Circularity: not an issue

• Serialization machinery will take circular 
references into account and do the right 
thing!
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Dot example

• Build on DotPanel example!
• saveSerial(File f)

– Given a file, write the data model to it with Java 
serialization.

– Makes an Point[] array of points and writes it which 
avoids the bother of iteration.

• We use an array instead of the ArrayList to avoid requiring a 
1.2 VM to read the file, although maybe the ArrayList would 
have been fine

• loadSerial(File f)
– Inverse of saveSerial.
– Reads an Point[] array of Points, and adds them to 

our data model.
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Dot example code

public void saveSerial(File file)  {
try {

ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream(file));

// Use the standard collection -> array util
// (the Point[0] tells it what type of array to return)
Point[] points = (Point[]) dots.toArray(new Point[0]);

out.writeObject(points); //  serialization!

out.close(); // polite to close on the way out
setDirty(false);

}
catch (Exception e) {

e.printStackTrace();
}

}
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Dot example code

private void loadSerial(File file)  {
try {

ObjectInputStream in = new ObjectInputStream(new
FileInputStream(file));

// Read in the object -- the CT type should be exactly as it was written
// -- Point[] in this case.
// Transient fields would be null.
Point[] points =  (Point[])in.readObject();
for (int i=0; i<points.length; i++) {

dots.add(points[i]);
}

in.close(); // polite to close on the way out
setDirty(false);

} catch (Exception e) {
e.printStackTrace();

}
}
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HW#2 note

• CS193J classes for serialization
– shield you from the exceptions, but otherwise behave like 

ObjectOutputStream and ObjectInputStream

SimpleObjectWriter w;
SimpleObjectWriter w = 

SimpleObjectWriter.openFileForWriting(filename);
w.writeObject( <object>) -- write an array or object (Point[] in above 

example)
w.close()

SimpleObjectReader r;
SimpleObjectReader r = 

SimpleObjectReader.openFileForReading(filename);
obj = r.readObject() -- returns the object written -- cast to what it is 

(Point [] in above example)
r.close()
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Threading (Handout #19)

• Introduction to Threading
– Motivation
– Java threads

• Simple Thread Example
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Faster Computers

• Why are computers today faster than 10 year 
ago?
– Process improvements

• Chips are smaller and run faster
– Superscalar pipelining parallelism techniques

• Doing more than one thing at a time from the one instruction 
stream

• Instruction Level Parallelism (ILP)
– There is a limit to the amount of parallelism that can 

be extracted from a single instruction stream
• About 3x to 4x
• We are well within the diminishing returns region here
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Hardware Trends

• Moore’s Law
– Moore's Law states that the number of of

transistors on a microchip will double every 18 
months  (Promulgated by Gordon Moore in 
1965)

– The density of transistors we can fit per 
square mm seems to double every 18 months

• Transistors become smaller and smaller

• What should we do with all these 
transistors??
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Moore’s Law at work…

Source: Intel Corporation, http://www.intel.com/research/silicon/mooreslaw.htm
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In Numbers…

Source: Intel Corporation, http://www.intel.com/research/silicon/mooreslaw.htm
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In Dollars…

• The cost of a chip is related to its size in square mm
– Cost is a super linear function – doubling the size more than 

doubles the cost

• Recent processors

217 mm242 M transistors0.18 umPentium 42001

184 mm222 M transistors0.25 umAMD Athlon1997

128 mm25.5 M transistors035umPentium MMX1995

79 mm21.2M transistors1.0um4861989
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What can we use transistors for?

• More cache
• More functional units

– Instruction Level Parallelism
• Multiple threads

• In 2002, Intel speculated that they could 
build a 1 billion transistor Itanium chip 
made of 4 Itanium cores and a huge 
shared cache
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Hardware vs. Software

• Writing single threaded software is easier
– Therefore we have used hardware to drive the 

performance of software
• Hardware is however hitting a limit

– Not on the number of transistors yet
• But on how much parallelism it can use based on 

single-threaded model code
– Programmers must start writing explicitly 

parallel code in order to take benefit of the 
improvements in hardware!
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Hardware concurrency trends

• Multiple CPU’s
– Cache coherency must make expensive off-chip trip

• Multiple cores on a single chip
– Can share on-chip cache
– Good way to use up more transistors without doing more design

• Simultaneous Multi-Threading (SMT)
– One core with multiple sets of registers

• Shifts between one thread and another quickly
• Hide latency by overlapping a few active threads

– HyperThreading (Intel Pentium 4 processor)
• By 2005 – 2-4 cores with each being 2-4 way multi-

threaded
– Appears to have 4-16 CPUs
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Software concurrency

• Processes
– Unix-style concurrency
– The ability to run multiple applications at once

• Example: Unix processes launched from a shell, 
piped to another process

– Separate address space
– Cooperate using read/write streams (pipes)
– Synchronization is easy

• Since there is no shared address space
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Threads

• The ability to do multiple things at once 
within the same application
– Finer granularity of concurrency

• Lightweight
– Easy to create and destroy

• Shared address space
– Can share memory variables directly
– May require more complex synchronization 

logic because of shared address space
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Advantages of threads…
• Use multiple processors

– Code is partitioned in order to be able to use n 
processors at once

• This is not easy to do! But Moore’s Law may force us in this 
direction

• Hide network/disk latency
– While one thread is waiting for something, run the 

others
– Dramatic improvements even with a single CPU

• Need to efficiently block the connections that are waiting, 
while doing useful work with the data that has arrived

– Writing good network codes relies on concurrency!
• Homework #3b will be a good example of this

• Keeping the GUI responsive
– Separate worker threads from GUI thread
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Why Concurrency is a Hard Problem

• No language construct to alleviate the problem
– Memory management can be solved by a garbage collector, no 

analog for concurrency
• Counter-intuitive

– Concurrency bugs are hard to spot in the code
– Difficult to get into the concurrency mindset

• No fixed programmer recipe either
• Client may need to know the internal model to use it 

correctly
– Hard to pass the Clueless-Client test

• Concurrency bugs are random
– Show up rarely, often not deterministic/reproducible easily
– Rule of thumb: if something bizarre happens try and note the 

current state as well as possible
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Java Threads

• Java includes built-in support for threading!
– Other languages have threads bolted-on to an 

existing structure
• VM transparently maps threads in Java to OS 

threads
– Allows threads in Java to take advantage of hardware 

and operating system level advancements
– Keeps track of threads and schedules them to get 

CPU time
– Scheduling may be pre-emptive or cooperative
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Current Running Thread

• “Thread of control” or “Running thread”
– The thread which is currently executing some 

statements 
• A thread of execution

– Executing statements, sending messages
– Has its own stack, separate from other 

threads
• A message send sends the current 

running thread over to execute the code in 
the receiver
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An idiom explained even more!

• Remember:
– public static void main(String[] args)

• Well…
– When you run a Java program, the VM 

creates a new thread and then sends the 
main(String[] args) message to the class to be 
run!

– Therefore, there is ALWAYS at least one 
running thread in existence!

• We can create more threads which can run 
concurrently
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Java Thread class

• A Thread is just another object in Java
– It has an address, responds to messages etc.
– Class Thread 

• in the default java.lang package

• A Thread object in Java is a token which 
represents a thread of control in the VM
– We send messages to the Thread object; the 

VM interprets these messages and does the 
appropriate operations on the underlying 
threads in the OS
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Creating Threads in Java

• Two approaches
– Subclassing Thread

• Subclass java.lang.Thread
• Override the run() method

– Implementing Runnable
• Implement the runnable interface
• Provide an implementation for the run() method
• Pass the runnable object into the constructor of a 

newThread Object
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Why two approaches?

• Remember: Java supports only single-
inheritance
– If you need to extend another class, then 

cannot extend thread at the same time
• Must use the Runnable pattern

• Two are equivalent
– Whether you subclass Thread or implement 

Runnable, the resulting thread is the same
– Runnable pattern just gives more flexibility
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Thread Lifecycle

• Steps in the lifecycle of a thread
– Instantiate new Thread Object (thread)

• Subclass of Thread
• Thread with a runnable object passed in to constructor

– Call thread.start()
• This begins execution of the run() method

– Thread finishes or exits when it exits the run() method
• Idiom – run() method will have some form of loop in it!

– Optional - thread.sleep or thread.yield()
– Thread.stop(), thread.suspend() and thread.resume() 

are deprecated!
• See 

http://java.sun.com/j2se/1.4.1/docs/guide/misc/threadPrimitiv
eDeprecation.html
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Thread.currentThread()

• Static utility method in the Thread class
– Returns a pointer to the Thread object that 

represents the current thread of control
• Example

int i = 6;
int sum = 7 + 12; // regular computation

Thread me = Thread.currentThread();
// "me" is the Thread object that represents our thread of
// control (the thread that computed the sum above)
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Joining

• Used when a thread wants to wait for 
another thread to complete its run()
– Sent the thread2.join() message

• Causes the current running thread to block 
efficiently until thread2 finishes its run() method

• Must catch InterruptedException
– We will talk about exceptions more later, for now just 

treat it as an idiom
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Join Example

// create a thread
Runnable runner = new Runnable() {

public void run() {
// do something in a loop

};
Thread t = new Thread(runnner);

// start a thread
t.start();

// at this point, two threads may be running -- me and t
// wait for t to complete its run
try {

t.join();
}
catch (InterruptedException ignored) {}
// now t is done (or we were interrupted)
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Simple Thread Example

/*
Demonstrates creating a couple worker threads, running them,
and waiting for them to finish.

Threads respond to a getName() method, which returns a string
like "Thread-1" which is handy for debugging.

*/
public class Worker1 extends Thread {

public void run() {
long sum = 0;
for (int i=0; i<100000; i++) {

sum = sum + i; // do some work

// every n iterations, print an update
// (a bitwise & would be faster -- mod is slow)
if (i%10000 == 0) {

System.out.println(getName() + " " + i);
}

}
}
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Simple Thread Example

public static void main(String[] args) {
Worker1 a = new Worker1();
Worker1 b = new Worker1();

System.out.println("Starting...");
a.start();
b.start();

// The current running thread (executing main()) blocks
// until both workers have finished
try {

a.join();
b.join();

}
catch (Exception ignored) {}

System.out.println("All done");
}

}
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Simple Thread Example Output
Starting...

Thread-0 0
Thread-1 0
Thread-0 10000
Thread-0 20000
Thread-1 10000
Thread-0 30000
Thread-1 20000
Thread-0 40000
Thread-1 30000
Thread-0 50000
Thread-1 40000
Thread-0 60000
Thread-1 50000
Thread-0 70000
Thread-1 60000
Thread-0 80000
Thread-0 90000
Thread-1 70000
Thread-1 80000
Thread-1 90000
All done
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Threading 2 (Handout #20)

• Two Threading Challenges
– Mutual Exclusion

• Keeping the threads from interfering with each 
other

• Worry about memory shared by multiple threads
– Cooperation

• Get threads to cooperate
– Typically centers on handing information from one thread 

to the other, or signaling one thread that the other thread 
has finished doing something

• Done using join/wait/notify
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Critical Section

• A section of code that causes problems if 
two or more threads are executing it at the 
same time
– Typically as a result of shared memory that 

both thread may be reading or writing
• Race Condition

– When two or more threads enter a critical 
section, they are supposed to be in a race 
condition

• Both threads want to execute the code at the same 
time, but if they do then bad things will happen
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Race Condition Example

class Pair {
private int a, b;

public Pair() {
a = 0;
b = 0;

}
// Returns the sum of a and b. (reader)
public int sum() {

return(a+b);
}
// Increments both a and b. (writer)
public void inc() {

a++;
b++;

}
}
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Reader/Writer Conflict

• Case
– thread1 runs inc(), while thread2 runs sum()

• thread2 could get an incorrect value if inc() is half way done
• This happens because the lines of sum() and inc() interleave

• Note
– Even a++ and b++ are not atomic statements

• Therefore, interleaving can happen at a scale finer than a 
single statement!

• a++ is really three steps: read a, increment a, write a
– Java guarantees 4-byte reads and writes will be 

atomic
– This is only a problem if the two threads are touching 

the same object and therefore the same piece of 
memory!
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Writer/Writer Conflict

• Case
– thread1 runs inc() while thread2 runs inc() on 

the same object
• The two inc()’s can interleave in order to leave the 

object in an inconsistent state

• Again
– a++ is not atomic and can interleave with 

another a++ to produce the wrong result
– This is true in most languages
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Heisenbugs

• Random Interleave – hard to observe
– Race conditions depend on having two or more 

threads “interleaving” their execution in just the right 
way to exhibit the bug

• Happens rarely and randomly, but it happens
– Interleaves are random

• Depending on system load and number of processors
• More likely to observe issue on multi-processor systems

• Tracking down concurrency bugs can be hard
– Reproducing a concurrency bug reliable is itself often 

hard
– Need to study the patterns and use theory in order to 

pre-emptively address the issue
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Java Locks

• Java includes built-in support for dealing 
with concurrency issues
– Includes keywords in order to mark critical 

sections
– Includes object locks in order to limit access 

to a single thread when necessary
• Java designed to encourage use of 

threading and concurrency
– Provides the tools needed in order to 

minimize concurrency pitfalls
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Object Lock and Synchronized keyword

• Every Java Object has as lock associated with it
• A “synchronized” keyword respects the lock of 

the receiver object
– For a thread to execute a synchronized method 

against a receiver, it must first obtain the lock of the 
receiver

– The lock is released when the method exits
– If the lock is held by another thread, the calling thread 

blocks (efficiently) till the other thread exits and the 
lock is available

– Multiple threads therefore take turns on who can 
execute against the receiver
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Receiver Lock

• The lock is in the receiver object
– Provides mutual exclusion mechanism for 

multiple threads sending messages to that 
object

– Other objects have their own lock
• If a method is not sychronized

– The thread will not acquire the lock before 
executing the method
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Sychronized Method Picture

synch a() {
 --
 --
}

ivar

ivar

thread run { 
 --
 --
}

synchronized method -- 
acquire object lock

release object lock

thread run { 
 --
 --
}

block, waiting for 
object lock

object lock
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Synchronized Method Example

/*
A simple class that demonstrates using the 'synchronized'
keyword so that multiple threads may send it messages.
The class stores two ints, a and b; sum() returns
their sum, and inc() increments both numbers.

<p>
The sum() and incr() methods are "critical sections" --
they compute the wrong thing if run by multiple threads
at the same time. The sum() and inc() methods are declared
"synchronized" -- they respect the lock in the receiver object.
*/
class Pair {

private int a, b;

public Pair() {
a = 0;
b = 0;

}
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Synchronized Method Example

// Returns the sum of a and b. (reader)
// Should always return an even number.
public synchronized int sum() {

return(a+b);
}
// Increments both a and b. (writer)
public synchronized void inc() {

a++;
b++;

}
}
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Synchronized Method Example

/*
A simple worker subclass of Thread.
In its run(), sends 1000 inc() messages
to its Pair object.

*/
class PairWorker extends Thread {

public final int COUNT = 1000;
private Pair pair;
// Ctor takes a pointer to the pair we use
public PairWorker(Pair pair) {

this.pair = pair;
}
// Send many inc() messages to our pair
public void run() {

for (int i=0; i<COUNT; i++) {
pair.inc();

}
}
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Synchronized Method Example

/*
Test main -- Create a Pair and 3 workers.
Start the 3 workers -- they do their run() --
and wait for the workers to finish.
*/
public static void main(String args[]) {

Pair pair = new Pair();
PairWorker w1 = new PairWorker(pair);
PairWorker w2 = new PairWorker(pair);
PairWorker w3 = new PairWorker(pair);
w1.start();
w2.start();
w3.start();
// the 3 workers are running
// all sending messages to the same object
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Synchronized Method Example

// we block until the workers complete
try {

w1.join();
w2.join();
w3.join();

}
catch (InterruptedException ignored) {}

System.out.println("Final sum:" + pair.sum()); // should be 6000
/*
If sum()/inc() were not synchronized, the result would
be 6000 in some cases, and other times random values
like 5979 due to the writer/writer conflicts of multiple
threads trying to execute inc() on an object at the same time.

*/
}

}
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Summary

• Today
– Object Serialization

• Cloning and Serializing
– Introduction to Threading

• Motivation
• Java threads

– Simple Thread Example
– Threading 2

• Race Conditions
• Locking
• Synchronized Methods

• Assigned Work Reminder
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003
• Start no later than TODAY!
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