
  

Fibonacci Heaps



  

Outline for Today
● Recap from Last Time

● Quick refresher on binomial heaps and lazy 
binomial heaps.

● The Need for decrease-key
● An important operation in many graph algorithms.

● Fibonacci Heaps
● A data structure efficiently supporting decrease-

key.
● Representational Issues

● Some of the challenges in Fibonacci heaps.



  

Recap from Last Time



  

(Lazy) Binomial Heaps
● Last time, we covered the binomial heap and a 

variant called the lazy binomial heap.
● These are priority queue structures designed to 

support efficient melding.
● Elements are stored in a collection of binomial trees.
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Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers
1, 2, 3, 4, 5, 6, 7, 8, and 9 into each heap.
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Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after performing an
extract-min in each binomial heap.
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Eager Binomial Heap

Lazy Binomial Heap

Let’s enqueue 10, 11, and 12 into both heaps.
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Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a
extract-min from both heaps.
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Operation Costs
● Eager Binomial Heap:

● enqueue: O(log n)
● meld: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
(Nothing to see here.)

● Lazy Binomial Heap:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n)*

● *amortized

Intuition: Each extract-min 
has to do a bunch of cleanup 
for the earlier enqueue 
operations, but then leaves us 
with few trees.



  

New Stuff!



  

The Need for decrease-key



  

The decrease-key Operation
● Some priority queues support the operation 

decrease-key(v, k), which works as follows:
Given a pointer to an element v, lower its 
key (priority) to k. It is assumed that k is 

less than the current priority of v.
● This operation is crucial in efficient 

implementations of Dijkstra's algorithm and 
Prim's MST algorithm.



  

Dijkstra and decrease-key
● Dijkstra's algorithm can be implemented with a priority 

queue using
● O(n) total enqueues,
● O(n) total extract-mins, and
● O(m) total decrease-keys.
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Dijkstra and decrease-key
● Dijkstra's algorithm can be implemented with a priority 

queue using
● O(n) total enqueues,
● O(n) total extract-mins, and
● O(m) total decrease-keys.

● Dijkstra's algorithm runtime is
O(n Tenq + n Text + m Tdec)  



  

Prim and decrease-key
● Prim's algorithm can be implemented with a priority 

queue using
● O(n) total enqueues,
● O(n) total extract-mins, and
● O(m) total decrease-keys.
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Prim and decrease-key
● Prim's algorithm can be implemented with a priority 

queue using
● O(n) total enqueues,
● O(n) total extract-mins, and
● O(m) total decrease-keys.

● Prim's algorithm runtime is
O(n Tenq + n Text + m Tdec)  



  

Standard Approaches
● In a binary heap, enqueue, extract-min, 

and decrease-key can be made to work 
in time O(log n) time each.

● Cost of Dijkstra's / Prim's algorithm:
  = O(n Tenq + n Text + m Tdec)

  = O(n log n + n log n + m log n)
  = O(m log n)



  

Standard Approaches
● In a lazy binomial heap, enqueue takes 

amortized time O(1), and extract-min 
and decrease-key take amortized time 
O(log n).

● Cost of Dijkstra's / Prim's algorithm:
  = O(n Tenq + n Text + m Tdec)

  = O(n + n log n + m log n)
  = O(m log n)



  

Where We're Going
● The Fibonacci heap has these amortized runtimes:

● enqueue: O(1)
● extract-min: O(log n).
● decrease-key: O(1).

● Cost of Prim's or Dijkstra's algorithm:
 = O(n Tenq + n Text + m Tdec)

 = O(n + n log n + m)
 = O(m + n log n)

● This is theoretically optimal for a comparison-based 
priority queue in Dijkstra's or Prim's algorithms.



  

The Challenge of decrease-key



  
How might we implement

decrease-key in a lazy binomial heap?
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How might we implement

decrease-key in a lazy binomial heap?
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If our lazy 
binomial heap 

has n nodes, how 
tall can the 

tallest tree be?

Answer at
 

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  
Challenge: Support decrease-key

in (amortized) time O(1).
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If our lazy 
binomial heap 

has n nodes, how 
tall can the 

tallest tree be?

Suppose the biggest 
tree has 2k nodes in it.

 

Then 2k ≤ n.
 

So k = O(log n).



  
Challenge: Support decrease-key

in (amortized) time O(1).
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We cannot have all three of these 
nice properties at once:
 

1. decrease-key takes time O(1).
2. Our trees are heap-ordered.
3. Our trees are binomial trees.



  
Challenge: Support decrease-key

in (amortized) time O(1).
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Challenge: Support decrease-key

in (amortized) time O(1).
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Challenge: Support decrease-key

in (amortized) time O(1).
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Challenge: Support decrease-key

in (amortized) time O(1).
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Challenge: Support decrease-key

in (amortized) time O(1).
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Challenge: Support decrease-key

in (amortized) time O(1).
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  Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

3 1 0

2

4

7



  Problem: What do we do in an extract-min?
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  Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

3 1

2

4

7

5

67

8

10 11 1293

4

Order 0Order 1Order 2

What We Used to Do



  Problem: What do we do in an extract-min?
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What We Used to Do

This system assumes we can 
assign an “order” to each tree.

 

That’s easy with binomial trees.
 

That’s harder with our new trees.
 

What should we do here?



  Problem: What do we do in an extract-min?
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Idea 1: A tree has order k 
if it has 2k nodes.
 

Idea 2: A tree has order k 
if its root has k children.

Order 2 Order 1 Order 1 Order 1 Order 0Order 0



  Problem: What do we do in an extract-min?
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Idea 1: A tree has order k 
if it has 2k nodes.
 

Idea 2: A tree has order k 
if its root has k children.

Order 2 Order 1 Order 1 Order 1 Order 0Order 0



  Problem: What do we do in an extract-min?
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  (1) To do a decrease-key, cut the node from its parent.
  (2) Do extract-min as usual, using child count as order.
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Question: How 
efficient is this?



  Claim: Our trees can end up with very unusual shapes.



  
Claim: Because tree shapes aren’t well-constrained, we 

can force extract-min to take amortized time Ω(n1/2).

Intuition: extract-min 
is only fast if it 

compacts nodes into a 
few trees.

There are Θ(n1/2) trees here.
 

Why?

Answer at
 

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  
Claim: Because tree shapes aren’t well-constrained, we 

can force extract-min to take amortized time Ω(n1/2).

Intuition: extract-min 
is only fast if it 

compacts nodes into a 
few trees.

There are Θ(n1/2) trees here.
 

What happens if we repeatedly 
enqueue and extract-min a 

small value?

Each operation does 
Θ(n1/2) work, and doesn’t 

make any future 
operations any better.



  Question: Why didn’t this happen before?

Order 3 Order 2 Order 1

4 Nodes 3 Nodes 2 Nodes

Order 0

1 Node

With n nodes, it’s possible 
to have Ω(n1/2) trees of 

distinct orders.



  Question: Why didn’t this happen before?

Order 3 Order 2 Order 1 Order 0

Binomial tree sizes grow 
exponentially.

 

With n nodes, we can 
have at most O(log n) 

trees of distinct orders.
8 Nodes

4 Nodes

2 Nodes 1 Node



  
Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to 
get somewhat imbalanced, 

slowly propagating 
information to the root.

Rule: Nodes can lose at 
most one child. If a node 
loses two children, cut it 

from its parent.



  
Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to 
get somewhat imbalanced, 

slowly propagating 
information to the root.

Rule: Nodes can lose at 
most one child. If a node 
loses two children, cut it 

from its parent.

This node is marked to
indicate that it has lost

a child.
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Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to 
get somewhat imbalanced, 

slowly propagating 
information to the root.

Rule: Nodes can lose at 
most one child. If a node 
loses two children, cut it 

from its parent.



  Question: Does this guarantee exponential tree size?

Intuition: Allow trees to 
get somewhat imbalanced, 

slowly propagating 
information to the root.

Rule: Nodes can lose at 
most one child. If a node 
loses two children, cut it 

from its parent.



  

Maximally-Damaged Trees
● Here’s a binomial tree of 

order 4. That is, the root 
has four children.

● Question: Using our 
marking scheme, how 
many nodes can we 
remove without 
changing the order of 
the tree?

● Equivalently: how many 
nodes can we remove 
without removing any 
direct children of the 
root?
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Maximally-Damaged Trees
0 1

0
We can't cut any nodes 
from this tree without 
making the root node 

have order 0.



  

Maximally-Damaged Trees
2
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We can't cut any of the 
root's children without 
decreasing its order.

However, we can cut this 
node, leaving the root 

node with two children.



  

Maximally-Damaged Trees
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However, any nodes below 
the second layer are fair 
game to be eliminated.

As before, we can't cut any 
of the root's children 

without decreasing its order.



  

Maximally-Damaged Trees
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We can't cut this node 
without triggering a 

cascading cut, so 
we're done.



  

Maximally-Damaged Trees
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We can start chopping away 
at these nodes!



  

Maximally-Damaged Trees
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Maximally-Damaged Trees
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Claim: The minimum 
number of nodes in a 
tree of order k is Fₖ₊₂



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

1 2

These trees are the base
cases for our inductive

line of reasoning.



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A binomial tree 
of order k+2.

What’s the maximum amount of 
damage we can do to this tree 

without cutting any of the direct 
children of the root?



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A binomial tree 
of order k+1.

We’re not actually cutting away 
this subtree. Instead, we’re just 

separating it for accounting 
purposes.

A binomial tree 
of order k+1.



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A binomial tree 
of order k+1.

Remove as many nodes 
here as possible without 

cutting any direct 
children of the root.



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of 

order k+1.

A (former) 
binomial tree of 

order k+1.
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A maximally-
damaged tree of 

order k+1.

A binomial tree 
of order k+1.

Cut as many nodes as 
possible without 

cutting more than two 
children from the root.
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cutting more than two 
children from the root.



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of 

order k+1.

A binomial tree 
of order k.

Cut away as many 
nodes as possible 

without cutting any 
children of the root.



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of 

order k+1.
A maximally-

damaged tree of 
order k.

A (former) 
binomial tree of 

order k.



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of 

order k+1.
A maximally-

damaged tree of 
order k.



  
Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

φ = 1+√5
2

Fact: Fk = Θ(φk), where

is the golden ratio.

Corollary: The number of 
nodes in a tree of order k 
grows exponentially with 

k (approximately 1.61k 
versus our previous 2k).



  

A Fibonacci heap is a lazy binomial heap 
with decrease-key implemented using the 
“lose at most one child” marking scheme.



  

How fast are the operations
on Fibonacci heaps?



  
Each enqueue slowly introduces trees.

Each extract-min rapidly cleans them up.

Φ = t
 

where
 

t is the number of trees.

Actual cost: O(1)
ΔΦ: +1

Amortized cost: O(1).
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Each enqueue slowly introduces trees.

Each extract-min rapidly cleans them up.

Φ = t
 

where
 

t is the number of trees.

This is the same analysis 
from last lecture!

 

Cost: O(t + log n).
ΔΦ: O(-t + log n).

Amortized cost: O(log n).



  
Each decrease-key may trigger a chain of cuts.

Those chains happen due to previous decrease-keys.
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Idea: Factor the number of marked nodes into our 

potential to offset the cost of cascading cuts.

Φ = t + m
 

where
 

t is the number of trees and
m is the number of marked nodes.

Actual cost: O(C)
ΔΦ: +1

Amortized cost: O(C).

Suppose this 
operation did C 

total cuts.



  
Idea 2: Each decrease-key hurts twice: once in a 

cascading cut, and once in an extract-min.

Φ = t + 2m
 

where
 

t is the number of trees and
m is the number of marked nodes.
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Idea 2: Each decrease-key hurts twice: once in a 

cascading cut, and once in an extract-min.

Φ = t + 2m
 

where
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Idea 2: Each decrease-key hurts twice: once in a 

cascading cut, and once in an extract-min.

Φ = t + 2m
 

where
 

t is the number of trees and
m is the number of marked nodes.

Actual cost: O(C)
ΔΦ: -C + 1

Amortized cost: O(1).



  

The Overall Analysis
● Here’s the final 

scorecard for the 
Fibonacci heap.

● These are excellent 
theoretical runtimes. 
There’s minimal room 
for improvement!

● Later work made all 
these operations 
worst-case efficient at 
a significant increase 
in both runtime and 
intellectual 
complexity.

enqueue: O(1)
find-min: O(1)
meld: O(1)
extract-min: O(log n)*

decrease-key: O(1)*

 

*amortized  



  

Representation Issues



  

Representing Trees
● The trees in a Fibonacci heap must be 

able to do the following:
● During a merge: Add one tree as a child of 

the root of another tree.
● During a cut: Cut a node from its parent in 

time O(1).
● Claim: This is trickier than it looks.



  

Representing Trees
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B C D E
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B C D E



  

Representing Trees

A

B C

D

E

A

B C D E

Finding this 
pointer might take 

time Θ(log n)!



  

The Solution

This is going to be weird.
 

Sorry.



  

The Solution

B C D E

A



  

The Solution

B C D E

A
Each node stores a 

pointer to its parent.

The parent 
stores a pointer 
to an arbitrary 

child.

The children of each 
node are in a circularly, 

doubly-linked list.



  

Awful Linked Lists
● Trees are stored as follows:

● Each node stores a pointer to some child.
● Each node stores a pointer to its parent.
● Each node is in a circularly-linked list of its 

siblings.
● The following possible are now possible 

in time O(1):
● Cut a node from its parent.
● Add another child node to a node.



  

Fibonacci Heap Nodes
● Each node in a Fibonacci heap stores

● A pointer to its parent.
● A pointer to the next sibling.
● A pointer to the previous sibling.
● A pointer to an arbitrary child.
● A bit for whether it's marked.
● Its order.
● Its key.
● Its element.



  

In Practice
● In practice, the constant factors on 

Fibonacci heaps make it slower than 
other heaps, except on huge graphs or 
workflows with tons of decrease-keys.

● Why?
● Huge memory requirements per node.
● High constant factors on all operations.
● Poor locality of reference and caching.



  

In Theory
● That said, Fibonacci heaps are worth 

knowing about for several reasons:
● Clever use of a two-tiered potential function 

shows up in lots of data structures.
● Implementation of decrease-key forms the 

basis for many other advanced priority 
queues.

● Gives the theoretically optimal comparison-
based implementation of Prim's and 
Dijkstra's algorithms.



  

More to Explore
● Since the development of Fibonacci heaps, there have been a 

number of other priority queues with similar runtimes.
● In 1986, a powerhouse team (Fredman, Sedgewick, Sleator, and Tarjan) 

invented the pairing heap. It’s much simpler than a Fibonacci heap, is fast 
in practice, but its runtime bounds are unknown!

● In 2012, Brodal et al. invented the strict Fibonacci heap. It has the same 
time bounds as a Fibonacci heap, but in a worst-case rather than amortized 
sense.

● In 2013, Chan invented the quake heap. It matches the asymptotic bounds 
of a Fibonacci heap but uses a totally different strategy.

● Also interesting to explore: if the weights on the edges in a graph 
are chosen from a continuous distribution, the expected number of 
decrease-keys in Dijkstra’s algorithm is O(n log (m / n)). That might 
counsel another heap structure!

● Also interesting to explore: binary heaps generalize to b-ary heaps, 
where each node has b children. Picking b = log (2 + ᵐ/ₙ) makes 
Dijkstra and Prim run in time O(m log n / log ᵐ/ₙ), which is O(m) if
m = Θ(n1+ε) for any ε > 0.



  

Next Time
● Randomized Data Structures

● Doing well on average, broadly speaking.
● Frequency Estimation

● Counting in sublinear space.
● Count-Min Sketches

● A simple, elegant, fast, and widely-used data 
structure.
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