

Fibonacci Heaps

Outline for Today
● Recap from Last Time

● Quick refresher on binomial heaps and lazy
binomial heaps.

● The Need for decrease-key
● An important operation in many graph algorithms.

● Fibonacci Heaps
● A data structure efficiently supporting decrease-

key.
● Representational Issues

● Some of the challenges in Fibonacci heaps.

Recap from Last Time

(Lazy) Binomial Heaps
● Last time, we covered the binomial heap and a

variant called the lazy binomial heap.
● These are priority queue structures designed to

support efficient melding.
● Elements are stored in a collection of binomial trees.

0

1 3

9

5

67

8

2

54

8

1

7

2

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens if we enqueue the numbers
1, 2, 3, 4, 5, 6, 7, 8, and 9 into each heap.

1

2 3

4

5

67

8

1 2

9

3 4 5 6 7 8 9

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after performing an
extract-min in each binomial heap.

2

9 3

4

5

67

8

2

9 3

4

5

67

8

Eager Binomial Heap

Lazy Binomial Heap

Let’s enqueue 10, 11, and 12 into both heaps.

2

9 3

4

5

67

8

2

9 3

4

5

67

8

10

11

12

10 11 12

Eager Binomial Heap

Lazy Binomial Heap

Draw what happens after we do a
extract-min from both heaps.

9

12

3

4 10

11

5

67

8

9

12

3

4 10

11

5

67

8

Operation Costs
● Eager Binomial Heap:

● enqueue: O(log n)
● meld: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
(Nothing to see here.)

● Lazy Binomial Heap:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n)*

● *amortized

Intuition: Each extract-min
has to do a bunch of cleanup
for the earlier enqueue
operations, but then leaves us
with few trees.

New Stuff!

The Need for decrease-key

The decrease-key Operation
● Some priority queues support the operation

decrease-key(v, k), which works as follows:
Given a pointer to an element v, lower its
key (priority) to k. It is assumed that k is

less than the current priority of v.
● This operation is crucial in efficient

implementations of Dijkstra's algorithm and
Prim's MST algorithm.

Dijkstra and decrease-key
● Dijkstra's algorithm can be implemented with a priority

queue using
● O(n) total enqueues,
● O(n) total extract-mins, and
● O(m) total decrease-keys.

0

5?

10?

∞?

∞?

5
2

10

4

1

1

 4
start

Dijkstra and decrease-key
● Dijkstra's algorithm can be implemented with a priority

queue using
● O(n) total enqueues,
● O(n) total extract-mins, and
● O(m) total decrease-keys.

● Dijkstra's algorithm runtime is
O(n Tenq + n Text + m Tdec)

Prim and decrease-key
● Prim's algorithm can be implemented with a priority

queue using
● O(n) total enqueues,
● O(n) total extract-mins, and
● O(m) total decrease-keys.

7

 43

6

 1

 5

10

2

4

 9

8

 9

7?

5?∞?

10?

2?

∞?

∞?

Prim and decrease-key
● Prim's algorithm can be implemented with a priority

queue using
● O(n) total enqueues,
● O(n) total extract-mins, and
● O(m) total decrease-keys.

● Prim's algorithm runtime is
O(n Tenq + n Text + m Tdec)

Standard Approaches
● In a binary heap, enqueue, extract-min,

and decrease-key can be made to work
in time O(log n) time each.

● Cost of Dijkstra's / Prim's algorithm:
 = O(n Tenq + n Text + m Tdec)

 = O(n log n + n log n + m log n)
 = O(m log n)

Standard Approaches
● In a lazy binomial heap, enqueue takes

amortized time O(1), and extract-min
and decrease-key take amortized time
O(log n).

● Cost of Dijkstra's / Prim's algorithm:
 = O(n Tenq + n Text + m Tdec)

 = O(n + n log n + m log n)
 = O(m log n)

Where We're Going
● The Fibonacci heap has these amortized runtimes:

● enqueue: O(1)
● extract-min: O(log n).
● decrease-key: O(1).

● Cost of Prim's or Dijkstra's algorithm:
 = O(n Tenq + n Text + m Tdec)

 = O(n + n log n + m)
 = O(m + n log n)

● This is theoretically optimal for a comparison-based
priority queue in Dijkstra's or Prim's algorithms.

The Challenge of decrease-key

How might we implement

decrease-key in a lazy binomial heap?

5

6

5

6 7

8

9

1010

12

1

32

4

7

How might we implement

decrease-key in a lazy binomial heap?

5

6

5

6 7

8

9

1010

12

1

32

4

7

How might we implement

decrease-key in a lazy binomial heap?

5

6

5

6 7

8

9

1010

7

1

32

4

7

How might we implement

decrease-key in a lazy binomial heap?

5

6

5

6 7

8

7

109

10

1

32

4

7

If our lazy
binomial heap

has n nodes, how
tall can the

tallest tree be?

Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Challenge: Support decrease-key

in (amortized) time O(1).

5

6

5

6 7

8

7

109

10

1

32

4

7

If our lazy
binomial heap

has n nodes, how
tall can the

tallest tree be?

Suppose the biggest
tree has 2k nodes in it.

Then 2k ≤ n.

So k = O(log n).

Challenge: Support decrease-key

in (amortized) time O(1).

5

6

5

6 7

8

7

109

3

1

32

4

7

We cannot have all three of these
nice properties at once:

1. decrease-key takes time O(1).
2. Our trees are heap-ordered.
3. Our trees are binomial trees.

Challenge: Support decrease-key

in (amortized) time O(1).

5

6

5

6 7

8

7

109

3 1

32

4

7

Challenge: Support decrease-key

in (amortized) time O(1).

5

6

5

6 7

8

7

109

3 1

32

4

7

Challenge: Support decrease-key

in (amortized) time O(1).

5

6

5

6 2

8

7

109

3 1

32

4

7

Challenge: Support decrease-key

in (amortized) time O(1).

5

6

5

6

2

87

109

3 1

32

4

7

Challenge: Support decrease-key

in (amortized) time O(1).

5

6

5

6

2

87

109

3 1

02

4

7

Challenge: Support decrease-key

in (amortized) time O(1).

5

6

5

6

2

87

109

3 1 0

2

4

7

 Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

3 1 0

2

4

7

 Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

3 1

2

4

7

What We Used to Do

9 3

4

5

67

8

10 11 12

 Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

3 1

2

4

7

5

67

8

10 11 1293

4

Order 0Order 1Order 2

What We Used to Do

 Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

3 1

2

4

7

5

67

8

11

12

3

49

10

What We Used to Do

This system assumes we can
assign an “order” to each tree.

That’s easy with binomial trees.

That’s harder with our new trees.

What should we do here?

 Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

3 1

2

4

7

What We Used to Do

9 3

4

5

67

8

10 11 12
Order 0Order 0Order 0Order 0 Order 1Order 2

Idea 1: A tree has order k
if it has 2k nodes.

Idea 2: A tree has order k
if its root has k children.

Order 2 Order 1 Order 1 Order 1 Order 0Order 0

 Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

3 1

2

4

7

Idea 1: A tree has order k
if it has 2k nodes.

Idea 2: A tree has order k
if its root has k children.

Order 2 Order 1 Order 1 Order 1 Order 0Order 0

 Problem: What do we do in an extract-min?

5

6

5

6

2

87

109

31

2

4

7

Order 0Order 1Order 2

 (1) To do a decrease-key, cut the node from its parent.
 (2) Do extract-min as usual, using child count as order.

5

6

5

6

2

87

109

1

2

4

7

3

Question: How
efficient is this?

 Claim: Our trees can end up with very unusual shapes.

Claim: Because tree shapes aren’t well-constrained, we

can force extract-min to take amortized time Ω(n1/2).

Intuition: extract-min
is only fast if it

compacts nodes into a
few trees.

There are Θ(n1/2) trees here.

Why?

Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Claim: Because tree shapes aren’t well-constrained, we

can force extract-min to take amortized time Ω(n1/2).

Intuition: extract-min
is only fast if it

compacts nodes into a
few trees.

There are Θ(n1/2) trees here.

What happens if we repeatedly
enqueue and extract-min a

small value?

Each operation does
Θ(n1/2) work, and doesn’t

make any future
operations any better.

 Question: Why didn’t this happen before?

Order 3 Order 2 Order 1

4 Nodes 3 Nodes 2 Nodes

Order 0

1 Node

With n nodes, it’s possible
to have Ω(n1/2) trees of

distinct orders.

 Question: Why didn’t this happen before?

Order 3 Order 2 Order 1 Order 0

Binomial tree sizes grow
exponentially.

With n nodes, we can
have at most O(log n)

trees of distinct orders.
8 Nodes

4 Nodes

2 Nodes 1 Node

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

This node is marked to
indicate that it has lost

a child.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Goal: Make tree sizes grow exponentially with order,

but still allow for subtrees to be cut out quickly.

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

 Question: Does this guarantee exponential tree size?

Intuition: Allow trees to
get somewhat imbalanced,

slowly propagating
information to the root.

Rule: Nodes can lose at
most one child. If a node
loses two children, cut it

from its parent.

Maximally-Damaged Trees
● Here’s a binomial tree of

order 4. That is, the root
has four children.

● Question: Using our
marking scheme, how
many nodes can we
remove without
changing the order of
the tree?

● Equivalently: how many
nodes can we remove
without removing any
direct children of the
root?

0 1

0

2

01

0

0 1

0

2

01

0

3

4

Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Maximally-Damaged Trees
0 1

0
We can't cut any nodes
from this tree without
making the root node

have order 0.

Maximally-Damaged Trees
2

01

0

0 1

0

We can't cut any of the
root's children without
decreasing its order.

However, we can cut this
node, leaving the root

node with two children.

Maximally-Damaged Trees

0 1

0

2

01

0

32

00

0 1

0

However, any nodes below
the second layer are fair
game to be eliminated.

As before, we can't cut any
of the root's children

without decreasing its order.

Maximally-Damaged Trees

0 0 1

0

32

00

0 1

0

We can't cut this node
without triggering a

cascading cut, so
we're done.

Maximally-Damaged Trees

0 1

0

2

01

0

0 1

0

2

01

0

3

4

0 0 1

0

32

00

0 1

0

We can start chopping away
at these nodes!

Maximally-Damaged Trees

0 0 1

0 0 0

2

4

0 0 1

0

32

00

0 1

0

Maximally-Damaged Trees

0 0 1

0 0 0

2

4

0 0 1

0

32

00

0 1

0

1 2 3 5 8

Claim: The minimum
number of nodes in a
tree of order k is Fₖ₊₂

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

1 2

These trees are the base
cases for our inductive

line of reasoning.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A binomial tree
of order k+2.

What’s the maximum amount of
damage we can do to this tree

without cutting any of the direct
children of the root?

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A binomial tree
of order k+1.

We’re not actually cutting away
this subtree. Instead, we’re just

separating it for accounting
purposes.

A binomial tree
of order k+1.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A binomial tree
of order k+1.

Remove as many nodes
here as possible without

cutting any direct
children of the root.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of

order k+1.

A (former)
binomial tree of

order k+1.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of

order k+1.

A binomial tree
of order k+1.

Cut as many nodes as
possible without

cutting more than two
children from the root.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of

order k+1.

A binomial tree
of order k.

Cut as many nodes as
possible without

cutting more than two
children from the root.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of

order k+1.

A binomial tree
of order k.

Cut away as many
nodes as possible

without cutting any
children of the root.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of

order k+1.
A maximally-

damaged tree of
order k.

A (former)
binomial tree of

order k.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

A maximally-
damaged tree of

order k+1.
A maximally-

damaged tree of
order k.

Theorem: The minimum number of

nodes in a tree of order k is Fₖ₊₂.
Thanks to former CS166ers Kevin Tan and Max Arseneault for this proof approach!

φ = 1+√5
2

Fact: Fk = Θ(φk), where

is the golden ratio.

Corollary: The number of
nodes in a tree of order k
grows exponentially with

k (approximately 1.61k
versus our previous 2k).

A Fibonacci heap is a lazy binomial heap
with decrease-key implemented using the
“lose at most one child” marking scheme.

How fast are the operations
on Fibonacci heaps?

Each enqueue slowly introduces trees.

Each extract-min rapidly cleans them up.

Φ = t

where

t is the number of trees.

Actual cost: O(1)
ΔΦ: +1

Amortized cost: O(1).

Each enqueue slowly introduces trees.

Each extract-min rapidly cleans them up.

Φ = t

where

t is the number of trees.

Each enqueue slowly introduces trees.

Each extract-min rapidly cleans them up.

Φ = t

where

t is the number of trees.

This is the same analysis
from last lecture!

Cost: O(t + log n).
ΔΦ: O(-t + log n).

Amortized cost: O(log n).

Each decrease-key may trigger a chain of cuts.

Those chains happen due to previous decrease-keys.

Φ = t

where

t is the number of trees.

Each decrease-key may trigger a chain of cuts.

Those chains happen due to previous decrease-keys.

Φ = t

where

t is the number of trees.

Each decrease-key may trigger a chain of cuts.

Those chains happen due to previous decrease-keys.

Φ = t

where

t is the number of trees.

Each decrease-key may trigger a chain of cuts.

Those chains happen due to previous decrease-keys.

Φ = t

where

t is the number of trees.

Each decrease-key may trigger a chain of cuts.

Those chains happen due to previous decrease-keys.

Φ = t

where

t is the number of trees.

Each decrease-key may trigger a chain of cuts.

Those chains happen due to previous decrease-keys.

Φ = t

where

t is the number of trees.

Idea: Factor the number of marked nodes into our

potential to offset the cost of cascading cuts.

Φ = t + m

where

t is the number of trees and
m is the number of marked nodes.

Idea: Factor the number of marked nodes into our

potential to offset the cost of cascading cuts.

Φ = t + m

where

t is the number of trees and
m is the number of marked nodes.

Actual cost: O(1)
ΔΦ: +2.

Amortized cost: O(1).

Idea: Factor the number of marked nodes into our

potential to offset the cost of cascading cuts.

Φ = t + m

where

t is the number of trees and
m is the number of marked nodes.

Idea: Factor the number of marked nodes into our

potential to offset the cost of cascading cuts.

Φ = t + m

where

t is the number of trees and
m is the number of marked nodes.

Actual cost: O(1)
ΔΦ: +2.

Amortized cost: O(1).

Idea: Factor the number of marked nodes into our

potential to offset the cost of cascading cuts.

Φ = t + m

where

t is the number of trees and
m is the number of marked nodes.

Idea: Factor the number of marked nodes into our

potential to offset the cost of cascading cuts.

Φ = t + m

where

t is the number of trees and
m is the number of marked nodes.

Actual cost: O(C)
ΔΦ: +1

Amortized cost: O(C).

Suppose this
operation did C

total cuts.

Idea 2: Each decrease-key hurts twice: once in a

cascading cut, and once in an extract-min.

Φ = t + 2m

where

t is the number of trees and
m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a

cascading cut, and once in an extract-min.

Φ = t + 2m

where

t is the number of trees and
m is the number of marked nodes.

Actual cost: O(1)
ΔΦ: +3.

Amortized cost: O(1).

Idea 2: Each decrease-key hurts twice: once in a

cascading cut, and once in an extract-min.

Φ = t + 2m

where

t is the number of trees and
m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a

cascading cut, and once in an extract-min.

Φ = t + 2m

where

t is the number of trees and
m is the number of marked nodes.

Actual cost: O(1)
ΔΦ: +3.

Amortized cost: O(1).

Idea 2: Each decrease-key hurts twice: once in a

cascading cut, and once in an extract-min.

Φ = t + 2m

where

t is the number of trees and
m is the number of marked nodes.

Idea 2: Each decrease-key hurts twice: once in a

cascading cut, and once in an extract-min.

Φ = t + 2m

where

t is the number of trees and
m is the number of marked nodes.

Actual cost: O(C)
ΔΦ: -C + 1

Amortized cost: O(1).

The Overall Analysis
● Here’s the final

scorecard for the
Fibonacci heap.

● These are excellent
theoretical runtimes.
There’s minimal room
for improvement!

● Later work made all
these operations
worst-case efficient at
a significant increase
in both runtime and
intellectual
complexity.

enqueue: O(1)
find-min: O(1)
meld: O(1)
extract-min: O(log n)*

decrease-key: O(1)*

*amortized

Representation Issues

Representing Trees
● The trees in a Fibonacci heap must be

able to do the following:
● During a merge: Add one tree as a child of

the root of another tree.
● During a cut: Cut a node from its parent in

time O(1).
● Claim: This is trickier than it looks.

Representing Trees

A

B C D E

A

B C D E

Representing Trees

A

B C

D

E

A

B C D E

Finding this
pointer might take

time Θ(log n)!

The Solution

This is going to be weird.

Sorry.

The Solution

B C D E

A

The Solution

B C D E

A
Each node stores a

pointer to its parent.

The parent
stores a pointer
to an arbitrary

child.

The children of each
node are in a circularly,

doubly-linked list.

Awful Linked Lists
● Trees are stored as follows:

● Each node stores a pointer to some child.
● Each node stores a pointer to its parent.
● Each node is in a circularly-linked list of its

siblings.
● The following possible are now possible

in time O(1):
● Cut a node from its parent.
● Add another child node to a node.

Fibonacci Heap Nodes
● Each node in a Fibonacci heap stores

● A pointer to its parent.
● A pointer to the next sibling.
● A pointer to the previous sibling.
● A pointer to an arbitrary child.
● A bit for whether it's marked.
● Its order.
● Its key.
● Its element.

In Practice
● In practice, the constant factors on

Fibonacci heaps make it slower than
other heaps, except on huge graphs or
workflows with tons of decrease-keys.

● Why?
● Huge memory requirements per node.
● High constant factors on all operations.
● Poor locality of reference and caching.

In Theory
● That said, Fibonacci heaps are worth

knowing about for several reasons:
● Clever use of a two-tiered potential function

shows up in lots of data structures.
● Implementation of decrease-key forms the

basis for many other advanced priority
queues.

● Gives the theoretically optimal comparison-
based implementation of Prim's and
Dijkstra's algorithms.

More to Explore
● Since the development of Fibonacci heaps, there have been a

number of other priority queues with similar runtimes.
● In 1986, a powerhouse team (Fredman, Sedgewick, Sleator, and Tarjan)

invented the pairing heap. It’s much simpler than a Fibonacci heap, is fast
in practice, but its runtime bounds are unknown!

● In 2012, Brodal et al. invented the strict Fibonacci heap. It has the same
time bounds as a Fibonacci heap, but in a worst-case rather than amortized
sense.

● In 2013, Chan invented the quake heap. It matches the asymptotic bounds
of a Fibonacci heap but uses a totally different strategy.

● Also interesting to explore: if the weights on the edges in a graph
are chosen from a continuous distribution, the expected number of
decrease-keys in Dijkstra’s algorithm is O(n log (m / n)). That might
counsel another heap structure!

● Also interesting to explore: binary heaps generalize to b-ary heaps,
where each node has b children. Picking b = log (2 + ᵐ/ₙ) makes
Dijkstra and Prim run in time O(m log n / log ᵐ/ₙ), which is O(m) if
m = Θ(n1+ε) for any ε > 0.

Next Time
● Randomized Data Structures

● Doing well on average, broadly speaking.
● Frequency Estimation

● Counting in sublinear space.
● Count-Min Sketches

● A simple, elegant, fast, and widely-used data
structure.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

