
More Texture Mapping

Recall: (Averaged) Vertex Normals
• Each vertex belongs to a number of triangles, each with their own normal
• Averaging those normals (weighted averaging, based on: area, angle, etc.) gives a unique
normal for each vertex

Recall: Smooth Shading
• Use barycentric weights to interpolate (averaged) vertex normals to the interior of the triangle:

!𝑁! =
𝛼" !𝑁" + 𝛼# !𝑁# + 𝛼$!𝑁$
𝛼" !𝑁" + 𝛼# !𝑁# + 𝛼$!𝑁$ $

faceted
silhouette

Perturbing the Normal
• Store a normal vector in the texture (instead of a color)
• This perturbed normal can “fake” geometric details

using real normal using fake normal

Bump Map
• Single-channel (grey-scale) height map ℎ!", representing the height at location (𝑢#, 𝑣$)

• The tangent plane at a point (𝑢#, 𝑣$, ℎ#$) is: −
%& '!,)"

%' 𝑢 − 𝑢* −
%& '!,)"

%) 𝑣 − 𝑣+ + ℎ − ℎ*+ = 0

• So, the outward (non-unit) normal is: −
%& '!,)"

%' , −
%& '!,)"

%) , 1

• Partial derivatives are computed via finite differences:
%& '!,)"

%'
= &!#$," ,&!&$,"

'!#$,'!&$
and

%& '!,)"
%)

= &!,"#$,&!,"&$
)"#$,)"&$

Normal Map
• A normalized vector has each component in [−1,1], so one can convert back and forth to a color via:

𝑅, 𝐺, 𝐵 = 255-.(#,#,#)$ and 𝑁 = $
$11 𝑅, 𝐺, 𝐵 − (1,1,1)

• Normal maps use more storage than bump maps, but require less computation

normal mapping on a plane
 (note the variation in specular highlights created by variation of the normal)

Displacement Mapping
• Subdivide geometry at render time, and use a height map ℎ 𝑢, 𝑣 to perturb vertices in the normal
direction
• Pros: self-occlusion, self-shadowing, correct silhouettes
• Cons: expensive, requires adaptive tessellation, still need bump/normal map for sub-triangle detail

bump map displacement map

𝒉(𝒖, 𝒗)original geometry displacement map

Displacement Mapping

bump map displacement map

Recall: Measuring Incoming Light
• Light Probe: a small reflective chrome sphere
• Photograph it, in order to record the incoming light (at its location) from all directions

Recall: Using the (measured) Incoming Light
• The (measured) incoming light can be used to render a synthetic object (with realistic lighting)

Environment Mapping
• Place a coordinate system at the center of the sphere, so the surface normal is: 𝑵 = 𝟏

𝒙𝟐#𝒚𝟐#𝒛𝟐
𝒙, 𝒚, 𝒛

• 𝑹 is the direction from the light probe to the camera
• Since 𝑰 and 𝑹 are equal-angle from 𝑵 (because of mirror reflection), 𝑵 has a one-to-one
correspondence with 𝑰

Environment Mapping
• Given a normal on the geometry being rendered:
• Use 𝒏𝒙 and 𝒏𝒚 (which are in [-1, 1]) to obtain texture coordinates 𝒖, 𝒗 = 𝟏

𝟐 (𝒏𝒙 + 𝟏, 𝒏𝒚 + 𝟏)
• Then, look up the incoming light in the texture (which is a picture of the chrome sphere)

Environment Mapping

Sky Boxes
• Model the sky with a texture on the inside of geometry.

Texture Acquisition via Imaging

Texture Acquisition via Medical Imaging

Texture Synthesis: Pixel Based
• Create a larger texture (one pixel at a time) from a small sample (using its structural content)
• Generate the texture in a raster scan ordering
• To generate the texture for pixel p
• compare p’s neighboring pixels in the (red) stencil to all potential choices in the sample
• choose the one with the smallest difference to fill pixel p
• When the stencil needs values outside the domain, use periodic boundaries (so, fill the last few
rows/columns with random values)

stencil texture sample raster scan ordering (with randomly generated periodic boundaries)

Texture Synthesis: Pixel Based

Heeger and Bergen Efros and Leung Wei and Levoy

Sample

Texture Synthesis: Patch Based
• For each patch:
• search the original sample to find the candidate that best matches the opverlap boundaries
• choose the best candidate
• blend overlapped regions to remove “seams”

sample texture

matching
boundary

regions

Texture Synthesis: Patch Based

Don’t Stretch Textures!
• Stretching out 10 bricks to cover an entire wall of a building is going to look unrealistic!
• Instead, can tile textures if the tiles are made with periodic boundaries

Marble Texture
• Define layers of different colors
• Use a function to map layer colors to 𝑢, 𝑣 texture locations
• For example:

𝑚𝑎𝑟𝑏𝑙𝑒𝐶𝑜𝑙𝑜𝑟 𝑢, 𝑣 = 𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑙𝑜𝑟 sin 𝑘'𝑢 + 𝑘)𝑣

Marble Texture
• 𝑘' and 𝑘) are spatial frequencies

• 𝑘', 𝑘) determines the direction, and
23

4!"54#"
determines the periodicity

• Problem: too regular (still need to add noise/randomness)

higher frequency lower frequency

Perlin Noise
•Noise should have both coherency and structure, in order to look more natural
• Ken Perlin proposed a specific (and amazing!) method for doing this

Perlin Noise
• Place a 2D grid over the texture image, and assign a random (unit) gradient 𝑔 𝑢#, 𝑣$ to each grid point
• For each pixel, compute the dot-products between vectors from the grid corners and the corresponding gradients
• Take a weighted average of the result:

𝑛𝑜𝑖𝑠𝑒 𝑢, 𝑣 =<
#)*,,;$)*,,

𝑤
𝑢 − 𝑢#
Δ𝑢

𝑤
𝑣 − 𝑣$
Δ𝑣

𝑔 𝑢#, 𝑣$ ⋅ 𝑢 − 𝑢#, 𝑣 − 𝑣$

• Cubic weighting: 𝑤 𝑡 = 2 𝑡 . − 3 𝑡 / + 1 for −1 < t < 1

Multiple Scales
•Natural textures tend to contain a variety of feature sizes
•Mimic this by adding together noises with different frequencies and amplitudes:

𝑝𝑒𝑟𝑙𝑖𝑛 𝑢, 𝑣 =E
2
𝑛𝑜𝑖𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑘 ∗ 𝑢, 𝑣 ∗ 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑘

• Each successive noise function is twice the frequency of the previous one:
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑘 = 22

• The amplitude of higher frequencies is measured by a persistence parameter (≤ 1)
• Thus, higher frequencies have a diminished contribution:

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑘 = 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒2

1D Examples
• Smaller persistence gives less higher frequency noise and thus a smoother result

(from: http://freespace.virgin.net/hugo.elias/models/m_perlin.htm)

2D Examples

Marble Texture + Perlin Noise
• Set the value of 𝐴 to scale the amount of noise:

𝑚𝑎𝑟𝑏𝑙𝑒𝐶𝑜𝑙𝑜𝑟 𝑢, 𝑣 = 𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑙𝑜𝑟 sin 𝑘'𝑢 + 𝑘)𝑣 + 𝐴 ∗ 𝑝𝑒𝑟𝑙𝑖𝑛 𝑢, 𝑣

3D Marble Texture
• “Carve” an object out of a 3D texture
•Marble texture function w/Perlin noise (for 3D):

𝑚𝑎𝑟𝑏𝑙𝑒𝐶𝑜𝑙𝑜𝑟 𝑢, 𝑣, 𝑤 = 𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑙𝑜𝑟 sin 𝑘'𝑢 + 𝑘)𝑣 + 𝑘3𝑤 + 𝐴 ∗ 𝑝𝑒𝑟𝑙𝑖𝑛 𝑢, 𝑣, 𝑤

3D Wood Texture
• Procedurally generate tree rings (and cut the object out of the 3D texture)
• Cylindrical coordinates for (𝑥, 𝑦, 𝑧) object points: 𝐻 = 𝑦, 𝑅 = 𝑥$ + 𝑧$, 𝜃 = tan,# 4

5

3D Wood Texture

Machine Learning

Machine Learning

Machine Learning

Machine Learning

Machine Learning

Machine Learning

