Home Intro Windowing Paging Smooth Scrolling Split-Screen Back
Hardware Level VGA and SVGA Video Programming Information Page
Special Effects Hardware 
Introduction
        This section describes the capabilities of the VGA hardware that can be used to implement special effects such as windowing, paging, smooth panning and scrolling, and split screen operation.. These functions are probably the least utilized of all of the VGA's capabilities, possibly because most texts devoted to video hardware provide only brief documentation. Also, the video BIOS provides no support for these capabilities so the VGA card must be programmed at the hardware level in order to utilize these capabilities. Windowing allows a program to view a portion of an image in display memory larger than the current display resolution, providing rough panning and scrolling. Paging allows multiple display screens to be stored in the display memory allowing rapid switching between them. Smooth panning and scrolling works in conjunction with windowing to provide more precise control of window position. Split-screen operation allows the creation of a horizontal division on the screen that creates a window below that remains fixed in place independent of the panning and scrolling of the window above. These features can be combined to provide powerful control of the display with minimal demand on the host CPU.

Windowing
        The VGA hardware has the ability treat the display as a window which can pan and/or scroll across an image larger than the screen, which is used by some windowing systems to provide a virtual scrolling desktop, and by some games and assembly demos to provide scrolling. Some image viewers use this to allow viewing of images larger than the screen. This capability is not limited to graphics mode; some terminal programs use this capability to provide a scroll-back buffer, and some editors use this to provide an editing screen wider than 80 columns.
        This feature can be implemented by brute force by simply copying the portion of the image to be displayed to the screen. Doing this, however takes significant processor horsepower. For example, scrolling a 256 color 320x200 display at 30 frames per second by brute force requires a data transfer rate of 1.92 megabytes/second. However, using the hardware capability of the VGA the same operation would require a data transfer rate of only 120 bytes/second. Obviously there is an advantage to using the VGA hardware. However, there are some limitations--one being that the entire screen must scroll (or the top portion of the screen if split-screen mode is used.) and the other being that the maximum size of the virtual image is limited to the amount of video memory accessible, although it is possible to redraw portions of the display memory to display larger virtual images.
        In text mode, windowing allows panning at the character resolution. In graphics mode, windowing allows panning at 8-bit resolution and scrolling at scan-line resolution. For more precise control, see Smooth Panning and Scrolling below. Because the VGA BIOS and most programming environment's graphics libraries do not support windowing, you must modify or write your own routines to write to the display for functions such as writing text or graphics. This section assumes that you have the ability to work with the custom resolutions possible when windowing is used.
        In order to understand virtual resolutions it is necessary to understand how the VGA's Start Address High Register, Start Address Low Register, and Offset field work. Because display memory in the VGA is accessed by a 32-bit bus, a 16-bit address is sufficient to uniquely identify any location in the VGA's 256K address space. The Start Address High Register and Start Address Low Register provide such an address. This address is used to specify either the location of the first character in text mode or the position of the first byte of pixels in graphics mode. At the end of the vertical retrace, the current line start address is loaded with this value. This causes one scan line of pixels or characters to be output starting at this address. At the beginning of the next scan-line (or character row in text mode) the value of the Offset Register multiplied by the current memory address size * 2 is added to the current line start address. The Double-Word Addressing field and the Word/Byte field specify the current memory address size. If the value of the Double-Word Addressing field is 1, then the current memory address size is four (double-word). Otherwise, the Word/Byte field specifies the current memory address size. If the value of the Word/Byte field is 0 then the current memory address size is 2 (word) otherwise, the current memory address size is 1 (byte).
        Normally in graphics modes, the offset register is programmed to represent (after multiplication) the number of bytes in a scan line. This means that (unless a CGA/MDA emulation mode is in effect) scan lines will be arranged sequentially in memory with no space in between, allowing for the most compact representation in display memory. However, this does not have to be the case--in fact, by increasing the value of the offset register we can leave "extra space" between lines. This is what provides for virtual widths. By programming the offset register to the value of the equation:

        Offset = VirtualWidth / ( PixelsPerAddress * MemoryAddressSize * 2 )

VirtualWidth is the width of the virtual resolution in pixels, and PixelsPerAddress is the number of pixels per display memory address (1, 2, 4 or 8) depending on the current video mode. For virtual text modes, the offset register is programmed with the value of the equation:

        Offset = VirtualWidth / ( MemoryAddressSize * 2 )

In text mode, there is always one character per display memory address. In standard CGA compatible text modes, MemoryAddressSize is 2 (word).
        After you have programmed the new offset, the screen will now display only a portion of a virtual display. The screen will display the number of scan-lines as specified by the current mode. If the screen reaches the last byte of memory, the next byte of memory will wrap around to the first byte of memory. Remember that the Start Address specifies the display memory address of the upper-left hand character or pixel. Thus the maximum height of a virtual screen depends on the width of the virtual screen. By increasing this by the number of bytes in a scan-line (or character row), the display will scroll one scan-line or character row vertically downwards. By increasing the Start Address by less than the number of bytes in a scan line, you can move the virtual window horizontally to the right. If the virtual width is the same as the actual width, one can create a vertical scrolling mode. This is used sometimes as an "elevator" mode or to provide rapid scrollback capability in text mode. If the virtual height is the same as the actual height, then only horizontal panning is possible, sometimes called "panoramic" mode. In any case, the equation for calculating the Start Address is:

        Start Address = StartingOffset + Y * BytesPerVirtualRow + X

Y is the vertical position, from 0 to the value of the VitrualHeight - ActualHeight. X is the horizontal position, from 0 to the value of BytesPerVirtualRow - BytesPerActualRow . These ranges prevent wrapping around to the left side of the screen, although you may find it useful to use the wrap-around for whatever your purpose. Note that the wrap-around simply starts displaying the next row/scan-line rather than the current one, so is not that useful (except when using programming techniques that take this factor into account.) Normally StartingOffset is 0, but if paging or split-screen mode is being used, or even if you simply want to relocate the screen, you must change the starting offset to the address of the upper-left hand pixel of the virtual screen.
        For example, a 512x300 virtual screen in a 320x200 16-color 1 bit/pixel planar display would require 512 pixels / 8 pixels/byte = 64 bytes per row and 64 bytes/row * 300 lines = 19200 bytes per screen. Assuming the VGA is in byte addressing mode, this means that we need to program the offset register Offset field with 512 pixels / (8 pixels/byte * 1 * 2) = 32 (20h). Adding one to the start address will move the display screen to the right eight pixels. More precise control is provided by the smooth scrolling mechanism. Adding 64 to the start address will move the virtual screen down one scan line. See the following chart which shows the virtual screen when the start address is calculated with an X and Y of 0:

Click for Textified Virtual Screen Mode Example

Paging
        The video display memory may be able to hold more than one screen of data (or virtual screen if virtual resolutions are used.) These multiple screens, called pages, allows rapid switching between them. As long as they both have the same actual (and virtual if applicable) resolution, simply changing the Start Address as given by the Start Address High Register and Start Address Low Register pair to point to the memory address of the first byte of the page (or set the StartingOffset term in the equation for virtual resolutions to the first memory address of the page.) If they have different virtual widths, then the Offset field must be reprogrammed. It is possible to store both graphics and text pages simultaneously in memory, in addition to different graphics mode pages. In this case, the video mode must be changed when changing pages. In addition, in text mode the Cursor Location must be reprogrammed for each page if it is to be displayed. Also paging allows for double buffering of the display -- the CPU can write to one page while the VGA hardware is displaying another. By switching between pages during the vertical retrace period, flicker free screen updates can be implemented.
        An example of paging is that used by the VGA BIOS in the 80x25 text mode. Each page of text takes up 2000 memory address locations, and the VGA uses a 32K memory aperture, with the Odd/Even addressing enabled. Because Odd/Even addressing is enabled, each page of text takes up 4000 bytes in host memory, thus 32768 / 4000 = 8 (rounded down) pages can be provided and can be accessed at one time by the CPU. Each page starts at a multiple of 4096 (1000h). Because the display controller circuitry works independent of the host memory access mode, this means that each page starts at a display address that is a multiple of 2048 (800h), thus the Starting Address is programmed to the value obtained by multiplying the page to be displayed by 2048 (800h). See the following chart which shows the arrangement of these pages in display memory:
 

Click here to display a textified Paging Memory Utilization Example

Smooth Panning and Scrolling
        Because the Start Address field only provides for scrolling and panning at the memory address level, more precise panning and scrolling capability is needed to scroll at the pixel level as multiple pixels may reside at the same memory address especially in text mode where the Start Address field only allows panning and scrolling at the character level.
        Pixel level panning is controlled by the Pixel Shift Count and Byte Panning fields. The Pixel Shift Count field specifies the number of pixels to shift left. In all graphics modes and text modes except 9 dot text modes and 256 color graphics modes, the Pixel Shift Count is defined for values 0-7. This provides the pixel level control not provided by the Start Address Register or the Byte Panning fields. In 9 dot text modes the Pixel Shift Count is field defined for values 8, and 0-7, with 8 being the minimum shift amount and 7 being the maximum. In 256 color graphics modes, due to the way the hardware makes a 256 color value by combining 2 16-bit values, the Pixel Shift Count field is only defined for values 0, 2, 4, and 6. Values 1, 3, 5, and 7 cause the screen to be distorted due to the hardware combining 4 bits from each of 2 adjacent pixels. The Byte Panning field is added to the Start Address Register when determining the address of the top-left hand corner of the screen, and has the value from 0-3. Combined, both panning fields allow a shift of 15, 31, or 35 pixels, dependent upon the video mode. Note that programming the Pixel Shift Count field to an undefined value may cause undesired effects and these effects are not guaranteed to be identical on all chipsets, so it is best to be avoided.
        Pixel level scrolling is controlled by the Preset Row Scan field. This field may take any value from 0 up to the value of the Maximum Scan Line field; anything greater causes interesting artifacts (there is no guarantee that the result will be the same for all VGA chipsets.) Incrementing this value will shift the screen upwards by one scan line, allowing for smooth scrolling in modes where the Offset field does not provide precise control.

Split-screen Operation
        The VGA hardware provides the ability to specify a horizontal division which divides the screen into two windows which can start at separate display memory addresses. In addition, it provides the facility for panning the top window independent of the bottom window. The hardware does not provide for split-screen modes where multiple video modes are possible in one display screen as provided by some non-VGA graphics controllers. In addition, there are some limitations, the first being that the bottom window's starting display memory address is fixed at 0. This means that (unless you are using split screen mode to duplicate memory on purpose) the bottom screen must be located first in memory and followed by the top. The second limitation is that either both windows are panned by the same amount, or only the top window pans, in which case, the bottom window's panning values are fixed at 0. Another limitation is that the Preset Row Scan field only applies to the top window -- the bottom window has an effective Preset Row Scan value of 0.
        The Line Compare field in the VGA, of which bit 9 is in the Maximum Scan Line Register, bit 8 is in the Overflow Register, and bits 7-0 are in the Line Compare Register, specifies the scan line address of the horizontal division. When the line counter reaches the value in the Line Compare Register, the current scan line start address is reset to 0. If the Pixel Panning Mode field is set to 1 then the Pixel Shift Count and Byte Panning fields are reset to 0 for the remainder of the display cycle allowing the top window to pan while the bottom window remains fixed. Otherwise, both windows pan by the same amount.
 

Notice: All trademarks used or referred to on this page are the property of their respective owners.
All pages are Copyright © 1997, 1998, J. D. Neal, except where noted. Permission for utilization and distribution is subject to the terms of the FreeVGA Project Copyright License.