Stanford University
Computer Science Department
CS 140 Final
Dawson Engler
Autumn 2000

This is an open-book exam. You have 180(!) minutes to answer as many questions as
possible. The number in parenthesis at the beginning of each question indicates the number
of points given to the question. Write all of your answers directly on the paper. Make your
answers as concise as possible. Sentence fragments ok.

NOTE: We will take off points if a correct answer also includes incorrect or
irrelevant information. (I.e., don’t put in everything you know in hopes of say-
ing the correct buzz word.)

Question || Points | Score
30
12
12
16
18
16
16
total 120

N[O U W

Stanford University Honor Code

In accordance with both the letter and the spirit of the Honor Code, I did not cheat on this
exam nor will I assist someone else cheating.

Name:

Signature:

1. Short-attention-span questions (30 points)
Answer each of the following questions and, in a sentence or two, say why your answer holds.
(5 points each).

1. Assume we have n threads at different priority levels and that they all use a lock [,
which schedules waiting threads in FIFO order. Describe a plausible steady state be-
havior of this system.

2. Assume every file records the last two times it was used, and whether these uses were
sequential. How could you use this information to control caching?

3. It’s the year 2010: CPU’s do trillions of instructions a second, disks are petabytes in
size, and disk access times are still (surprise) about 10ms. Your old ¢s140 partner still
stalks you. Their latest scheme is exploit the fact that CPU instructions are essentially
free to compress all on-disk data, despite the fact that disks are not, typically, any-
where near full. What is a likely reason that read workloads could actually see much
better performance in this scheme?

4. Unsurprisingly, it’s common to have multiple connections open between the same two
machines. Give a plausibly-useful optimization that could be done to the reliable trans-
mission protocol we talked in class about to exploit this situation.

5. Assume we have an extent-based FS (such as the Linux ext2 FS) that tracks extents
of file data using a block pointer and a block count. What is a bad file access pattern
for this system compared to a FS that just uses simple block pointers?

6. Assume our TLB can map arbitrary byte ranges. Explain how a paged-VM system
and a malloc implementation could cooperate to eliminate heap fragmentation. Is this
a good idea?

2. Matrix fun (12 points)
You are given a bunch of scientific code that contains loops of the form:

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
alj1[i]1 += b[jI[il;
The matrices a and b are allocated using code such as:
a = malloc(n * sizeof *a);
for(i = 0; i < n; i++)
ali] = malloc(n * sizeof a[i]);
You notice that the addition loop trashes the TLB much more than it should. Say why, and
give a simple fix. In general, what do you expect to happen to paging performance?

3. Stupid scheduling tricks (12 points)
Your partner hacks up a proportional share scheduler that attempts to allocate each process
a specific share of the processor. It works as follows:

e A newly arriving process is assigned the minimum of all priorities on the system, or 0
if there are no other processes.

e Every time a process runs, its priority is incremented by priority = priority+1/weight.
(Note, you may ignore roundoff error.)

e At each scheduling point the system runs the smallest priority process. It never leaves
the CPU idle if there is a runnable process.

For example, assume there are no processes on the system, and we start two processes P1
and P2 with weights 10 and 1 respectively (intending to give P1 10x more of the CPU than
P2). The scheduler will run P1, give it a priority of 1/10, run P2, and give it a priority of 1.
P1 will then be run 9 more times until it also has a priority of 1, then P2 will run once, etc.

Assume we run the job mix above for “a while” and then introduce a third process. Will
the above scheduler give processes their fair share on a two-processor system? Please either
state your intuition, or give a small, concrete example where it breaks. (Note, it’s ok if the
scheduler does not preserve ratios when there is a surplus — i.e., running P1 and P2 on the
system above will give them both 100% of a CPU, but will not penalize P1 since it cannot
use more than 100% of the CPU.)

4. Something for nothing. (16 points)

Assume you have a set of tasks that must read every block of data on disk (e.g., a virus scan
or backup) but are low priority compared to normal processes. Assume further that your
disk’s seek time and rotational delay are roughly similar in cost.

Part A (8 points) Explain how and when you can interleave background requests without
hurting the performance of normal disk writes.

Part B (6 points) To do this interleaving, you will need the disk driver to tell you how
much various accesses cost. Give the C prototype of the function you would like, and describe
what it does. Note, that the driver only has a limited view of the universe (i.e., the disk
drive) so this function must be something realistic for it to implement.

5. Redundancy (18 points)

You notice that many blocks on the same system have the same value. (E.g., there are many
copies of nachos running around, many slightly-edited files have the same prefix, etc.) To
exploit this you modify a Vanilla Unix file system to share blocks across files by adding a
reference counter to the start of every disk block.

Part A (14 points) Assume you use write ordering to guarantee file system consistency.
In a few sentences, say how to order writes for block deallocation and what you will do if the
system crashes. Be careful that there are no non-recoverable failures in your scheme. (Hint:
consider what could happen if someone allocates a block you just deallocated.)

Part B (4 points) Assume you implement your scheme with minimal overhead. When
would you expect it to have poor read performance?

6. Concurrency fun (16 points)

Part A. (8 points) Assume that every word-sized memory location has an associated
version number, which is incremented on every write. Given the function version to access
this value

int version(int *p);
is the following a correct implementation of our usual spin lock?

int lock(int *1) {

while(1) {
int old = version(l);
if(1*1) {
*1 = 1;
if((old+1) == version(1))
break;
}
}
}
void unlock(int *1) {
*1 = 0;
}

If so, give a short intuition, if not, give a counter example.

Part B (8 points) Assume we have a critical section that only writes to a shared vari-
able, but does not read any shared state:

shared int x; /* shared variable */
lock_t x_1; /* lock for x */

void foo(int y) {
lock(x_1);
X =y;
unlock(x_1);
}

What is the intuition for why we can eliminate locking in foo? Is this also true for critical
sections that have writes to multiple pieces of shared state?

7. The essence of naming. (16 points)

A “naming system” maps names to values (which in turn can be other names). Many of our
abstractions do some amount of naming. For example, VM maps virtual addresses (names)
to physical addresses (values); a Unix FS uses meta data to map file offsets and file names
to disk blocks. Using these systems and others as a basis, discuss three issues common to
different naming systems, giving several examples to make your case. Possible issues include:
what influences the structure used to do this mapping, what happens when names cannot be
resolved, whether names can be synonyms, if the space of names is flat, etc. Please discuss
at least one property not on this list. Feel free to use short bulleted lists rather than full
sentences. Your answer should easily fit on this page.

