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CS109 March 7, 2024

Beta and Parameter Estimation Solution

Before you leave lab, make sure you click here so that you’re marked as having attended this
week’s section. The CA leading your discussion section can enter the password needed once
you’ve submitted.

1 Warmups
1.1 Beta

a. Suppose you have a coin where you have no prior belief on its true probability of heads 𝑝.
How can you model this belief as a Beta distribution?

b. Suppose you have a coin which you believe is fair, with ”strength” 𝛼. That is, pretend you’ve
seen 𝛼 heads and 𝛼 tails. How can you model this belief as a Beta distribution?

c. Now suppose you take the coin from the previous part and flip it 10 times. You see 8 heads
and 2 tails. How can you model your posterior belief of the coin’s probability of heads?

a. Beta(1, 1) is a uniform prior, meaning that prior to seeing the experiment, all proba-
bilities of heads are equally likely.

b. Beta(𝛼 + 1, 𝛼 + 1). This is our prior belief about the distribution.

c. Beta(𝛼 + 9, 𝛼 + 3)

1.2 Beta Sum
What is the distribution of the sum of 100 iid Betas? Let 𝑋 be the sum

𝑋 =

100∑︁
𝑖=1

𝑋𝑖 where each 𝑋𝑖 ∼ Beta(𝑎 = 3, 𝑏 = 4)

Note the variance of a Beta:

Var(𝑋𝑖) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
where 𝑋𝑖 ∼ Beta(𝑎, 𝑏)

By the Central Limit Theorem, the sum of equally weighted IID random variables
will be Normally distributed. We calculate the expectation and variance of 𝑋𝑖 using the beta

https://web.stanford.edu/class/cs109/cgi-bin/lab8
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formulas:

𝐸 (𝑋𝑖) =
𝑎

𝑎 + 𝑏 Expectation of a Beta

=
3
7
≈ 0.43

Var(𝑋𝑖) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
Variance of a Beta

=
3 · 4

(3 + 4)2(3 + 4 + 1)

=
12

49 · 8
≈ 0.03

𝑋 ∼ 𝑁 (𝜇 = 𝑛 · 𝐸 [𝑋𝑖], 𝜎2 = 𝑛 · Var(𝑋𝑖))
∼ 𝑁 (𝜇 = 43, 𝜎2 = 3)

2 Problems
2.1 Vision Test MLE
You decide that the vision tests given by eye doctors would be more precise if we used an
approach inspired by logistic regression, which we’ll learn about on Friday. In a vision test a user
looks at a letter with a particular font size and either correctly guesses the letter or incorrectly
guesses the letter.

You assume that the probability that a particular patient is able to guess a letter correctly is:

𝑝 = 𝜎(𝜃 + 𝑓 )

Where 𝜃 is the user’s vision score and 𝑓 is the font size of the letter. This formula uses the sigmoid
function, which we’ll study more during Week 9 of the quarter!

𝜎(𝑧) = 1
1 + 𝑒−𝑧

𝜕𝜎(𝑧)
𝜕𝑧

= 𝜎(𝑧) [1 − 𝜎(𝑧)]

Explain how you could estimate a user’s vision score (𝜃) based on their 20 responses
( 𝑓 (1) , 𝑦 (1)) . . . ( 𝑓 (20) , 𝑦 (20)), where 𝑦 (𝑖) is an indicator variable for whether the user correctly
identified the 𝑖th letter and 𝑓 (𝑖) is the font size of the 𝑖th letter. Solve for any and all partial
derivatives required by the approach you describe in your answer.

We are going to solve this problem by finding the MLE estimate of 𝜃. To find the MLE
estimate, we are going to find the argmax of the log likelihood function. To calculate argmax
we are going to use gradient ascent, which requires that we know the partial derivative of
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the log likelihood function with respect to theta.
First we write the log likelihood:

𝐿 (𝜃) =
20∏
𝑖=1

𝑝𝑦𝑖 (1 − 𝑝) [1−𝑦𝑖]

𝐿𝐿 (𝜃) =
20∑︁
𝑖=1

(𝑦𝑖 log(𝑝) + (1 − 𝑦𝑖) log(1 − 𝑝))

Then we find the derivative of log likelihood with respect to 𝜃. We first do this for one data
point:

𝜕𝐿𝐿

𝜕𝜃
=
𝜕𝐿𝐿

𝜕𝑝
· 𝜕𝑝
𝜕𝜃

We can calculate both the smaller partial derivatives independently:

𝜕𝐿𝐿

𝜕𝑝
=
𝑦𝑖

𝑝
− 1 − 𝑦𝑖

1 − 𝑝
𝜕𝑝

𝜕𝜃
= 𝑝 [1 − 𝑝]

Putting it all together for one letter:

𝜕𝐿𝐿

𝜕𝜃
=
𝜕𝐿𝐿

𝜕𝑝
· 𝜕𝑝
𝜕𝜃

=
[ 𝑦𝑖
𝑝
− 1 − 𝑦𝑖

1 − 𝑝
]
𝑝 [1 − 𝑝]

= 𝑦𝑖 (1 − 𝑝) − 𝑝(1 − 𝑦𝑖)
= 𝑦𝑖 − 𝑝
= 𝑦𝑖 − 𝜎(𝜃 − 𝑓 )

For all twenty examples:

𝜕𝐿𝐿

𝜕𝜃
=

20∑︁
𝑖=1

𝑦𝑖 − 𝜎(𝜃 + 𝑓 (𝑖))

2.2 Why Boba Cares About MAP
You don’t understand why there’s no boba place within walking distance around campus, so you
decide to start one. In order to estimate the amount of ingredients needed and the time you will
spend in the business (you still need to study), you want to estimate how many orders you will
receive per hour. After taking CS109, you are pretty confident that incoming orders can be
considered as independent events and the process can be modeled with a Poisson.
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Now the question is - what is the 𝜆 parameter of the Poisson? In the first hour of your soft opening,
you are visited by 4 curious students, each of whom made an order. You have a prior belief that
𝑓 (Λ = 𝜆) = 𝐾 · 𝜆 · 𝑒− 𝜆

2 . What is the MLE estimate? What is inference of 𝜆 given the observation?
What is the Maximum a Posteriori (MAP) estimate of 𝜆? Through your process try to identify
what is a point-estimate, and what is a distribution.

To find the MLE, we start from finding the likelihood function (i.e. joint probability of
observed events) and find the 𝜆 that maximizes the likelihood function.

𝐿 (𝜆) = 𝜆
4 · 𝑒−𝜆

4!
𝐿𝐿 (𝜆) = 4 log(𝜆) − 𝜆 − log(4!)
𝜕𝐿𝐿

𝜕𝜆
=

4
𝜆
− 1

Set 𝜕𝐿𝐿
𝜕𝜆

to 0 and solve for 𝜆.

𝜆 = 4

Inference of 𝜆 given the observation:

𝑓 (𝜆 |𝑋 = 4) = 𝑃(𝑋 = 4|𝜆) · 𝑓 (𝜆)
𝑃(𝑋 = 4)

MAP estimate of 𝜆: we find the 𝜆 that maximizes the inference given the observation, i.e.
we want to solve:

arg max
𝜆

𝑓 (𝜆 |𝑋 = 4) = arg max
𝜆

𝑃(𝑋 = 4|𝜆) · 𝑓 (𝜆)
𝑃(𝑋 = 4)

= arg max
𝜆

𝑃(𝑋 = 4|𝜆) · 𝑓 (𝜆)

= arg max
𝜆

𝜆4 · 𝑒−𝜆
4!

· 𝐾 · 𝜆 · 𝑒− 𝜆
2

Take log.

𝑙𝑜𝑔(𝜆
4 · 𝑒−𝜆

4!
· 𝐾 · 𝜆 · 𝑒− 𝜆

2 ) = 4𝑙𝑜𝑔(𝜆) − 𝜆 + 1 + 𝑙𝑜𝑔(𝐾) + 𝑙𝑜𝑔(𝜆) − 𝜆
2

Differentiate with respect to 𝜆, set to 0 and solve.

5
𝜆
− 1 − 1

2
= 0

𝜆 =
10
3
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2.3 Dirk/Evan Showdown
Dirk and Evan are set to compete in a match of seven games, and the player winning the most will
be rewarded with a medal from the Ruler of all of Bayestopia, Queen Doris. The outcomes of each
of the seven games are independent of one another, and Dirk wins each game with a probability 𝑝
(so that Evan wins with probability 1 − 𝑝). Unfortunately, 𝑝 is unknown, so you decide to model 𝑝
itself as a Beta random variable such that 𝑝 ∼ 𝐵𝑒𝑡𝑎(1, 1).

To learn more about 𝑝, you read up on all of their previous games, find that they’ve already
competed 12 times, and learn that Evan has won 7 of those 12 games in this order:
WLLLWWLWWLWW. Even if Evan’s edge is ever so slight, he appears to be the a priori favorite.

a. Find the posterior distribution of 𝑝 given Dirk and Evan’s prior history competing against
one another.

b. Recall that the PDF of a 𝐵𝑒𝑡𝑎 distribution on integer parameters 𝑎 and 𝑏 is given as:

𝑓 (𝑥 |𝑎, 𝑏) = 1
𝐵(𝑎, 𝑏) 𝑥

𝑎−1(1 − 𝑥)𝑏−1, where 𝐵(𝑎, 𝑏) is a normalization constant

Assuming our hyperparameters 𝑎 and 𝑏 are positive integers, explain why the expected
value of 𝑝𝑚 (1 − 𝑝)𝑛—that is, 𝐸 [𝑝𝑚 (1 − 𝑝)𝑛]—is given by

𝐸 [𝑝𝑚 (1 − 𝑝)𝑛] = 𝐵(𝑎 + 𝑚, 𝑏 + 𝑛)
𝐵(𝑎, 𝑏)

You can assume that 𝑚 and 𝑛 are nonnegative integers as well.

c. Relying only on the posterior distribution of 𝑝 that you computed for part a and the result
from part b, compute the expected probability that the best-of-seven match between Dirk
and Evan isn’t settled after the first six games and therefore requires the seventh be played?

a. Because the prior is 𝑝 ∼ 𝐵𝑒𝑡𝑎(1, 1), and because the likelihood function is a Binomial
with 𝑛 = 12 and unknown p, our posterior is also a Beta, but with parameters of
𝑎 = 1 + 5 = 6 and 𝑏 = 1 + 7 = 8. More compactly, 𝑝 |data ∼ 𝐵𝑒𝑡𝑎(6, 8).

b. LOTUS tells us that the expected value of an arbitrary function 𝑓 (𝑥) is:

𝐸 [ 𝑓 (𝑥)] = 1
𝐵(𝑎, 𝑏)

∫ 1

0
𝑓 (𝑥) 𝑥𝑎−1(1 − 𝑥)𝑏−1.

𝑓 (𝑥) = 𝑥𝑚 (1 − 𝑥)𝑛 blends beautifully with the PDF of our Beta posterior:

𝐸 [ 𝑓 (𝑝)] = 𝐸 [𝑝𝑚 (1 − 𝑝)𝑛] = 1
𝐵(𝑎, 𝑏)

∫ 1

0
𝑥𝑚 (1 − 𝑥)𝑛𝑥𝑎−1(1 − 𝑥)𝑏−1

=
1

𝐵(𝑎, 𝑏)

∫ 1

0
𝑥𝑚+𝑎−1(1 − 𝑥)𝑛+𝑏−1 =

𝐵(𝑎 + 𝑚, 𝑏 + 𝑛)
𝐵(𝑎, 𝑏)
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c. The probability that a seventh game is played is
(6
3
)
𝑝3(1 − 𝑝)3. So the expected value

is
(6
3
)
𝑝3(1 − 𝑝)3 would be: (

6
3

)
𝐵(9, 11)
𝐵(6, 8) .

2.4 Multiclass Bayes
In this problem we are going to explore how to write Naive Bayes for multiple output classes. We
want to predict a single output variable Y which represents how a user feels about a book. Unlike
in your homework, the output variable Y can take on one of the four values in the set
{Like,Love,Haha, Sad}. We will base our predictions off of three binary feature variables
𝑋1, 𝑋2, and 𝑋3 which are indicators of the user’s taste. All values 𝑋𝑖 ∈ {0, 1}.

We have access to a dataset with 10,000 users. Each user in the dataset has a value for 𝑋1, 𝑋2, 𝑋3
and 𝑌 . You can use a special query method count that returns the number of users in the dataset
with the given equality constraints (and only equality constraints). Here are some example usages
of count:

count(𝑋1 = 1, 𝑌 = Haha) returns the number of users where 𝑋1 = 1 and 𝑌 = Haha.
count(𝑌 = Love) returns the number of users where 𝑌 = Love.
count(𝑋1 = 0, 𝑋3 = 0) returns the number of users where 𝑋1 = 0, and 𝑋3 = 0.

You are given a new user with 𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0. What is the best prediction for how the user
will feel about the book (𝑌 )? You may leave your answer in terms of an argmax function. You
should explain how you would calculate all probabilities used in your expression. Use Laplace
estimation when calculating probabilities.

We can make the Naive Bayes assumption of independence and simplify argmax of 𝑃(𝑌 |X)
to get an expression for 𝑌 , the predicted output value, and evaluate it using the provided
count function.

𝑌 = arg max
𝑦

𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)
𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0)

= arg max
𝑦

𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

= arg max
𝑦

𝑃(𝑋1 = 1|𝑌 = 𝑦)𝑃(𝑋2 = 1|𝑌 = 𝑦)𝑃(𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦), where:

𝑃(𝑋1 = 1|𝑌 = 𝑦) = [count(𝑋1 = 1, 𝑌 = 𝑦) + 1]/[count(𝑌 = 𝑦) + 2]
𝑃(𝑋2 = 1|𝑌 = 𝑦) = [count(𝑋2 = 1, 𝑌 = 𝑦) + 1]/[count(𝑌 = 𝑦) + 2]
𝑃(𝑋3 = 1|𝑌 = 𝑦) = [count(𝑋3 = 1, 𝑌 = 𝑦) + 1]/[count(𝑌 = 𝑦) + 2]
𝑃(𝑋1 = 0|𝑌 = 𝑦) = [count(𝑋1 = 0, 𝑌 = 𝑦) + 1]/[count(𝑌 = 𝑦) + 2]
𝑃(𝑋2 = 0|𝑌 = 𝑦) = [count(𝑋2 = 0, 𝑌 = 𝑦) + 1]/[count(𝑌 = 𝑦) + 2]
𝑃(𝑋3 = 0|𝑌 = 𝑦) = [count(𝑋3 = 0, 𝑌 = 𝑦) + 1]/[count(𝑌 = 𝑦) + 2]
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𝑃(𝑌 = 𝑦) = count(𝑌 = 𝑦)/10, 000

2.5 Gaussian Naı̈ve Bayes
The version of Naı̈ve Bayes that we used in class worked great when the feature values were all
binary. If instead they are continuous, we are going to have to rethink how we estimate of the
probability of the 𝑖th feature given the label, 𝑃(𝑋𝑖 |𝑌 ). The ubiquitous solution is to make the
Gaussian Input Assumption that:

If 𝑌 = 0, then 𝑋𝑖 ∼ 𝑁 (𝜇𝑖,0, 𝜎2
𝑖,0)

If 𝑌 = 1, then 𝑋𝑖 ∼ 𝑁 (𝜇𝑖,1, 𝜎2
𝑖,1)

For each feature, there are 4 parameters (mean and variance for both class labels). There is a final
parameter, 𝑝, which is the estimate of 𝑃(𝑌 = 1). Assume that you have trained on data with two
input features and have already estimated all 9 parameter values, including that 𝑝 = 0.6:

Feature 𝑖 𝜇𝑖,0 𝜇𝑖,1 𝜎2
𝑖,0 𝜎2

𝑖,1

1 5 0 1 1
2 0 3 1 4

Write an inequality to predict whether 𝑌 = 1 for input [𝑋1 = 5, 𝑋2 = 3]. Use the Naı̈ve Bayes
assumption and the Gaussian Input Assumption. Your expression should be in terms of the
learned parameters (either using numbers or symbols is fine).

Fundamentally, you need to compute two probabilities: 𝑃(𝑋1 = 5, 𝑋2 = 3, 𝑌 = 0) and
𝑃(𝑋1 = 5, 𝑋2 = 3, 𝑌 = 1) and then predict 𝑌 to be whichever of 0 and 1 leads to a higher
joint probability. However, when some of the input variables are continuous, the probability
those continuous values takes on any specific value is 0.

However, you can still compute and compare probability densities, as with:
𝑓 (𝑋1 = 5, 𝑋2 = 3, 𝑌 = 0) and 𝑓 (𝑋1 = 5, 𝑋2 = 3, 𝑌 = 1). The Naı̈ve Bayes as-
sumption allows us to rewrite those densities as:

𝑓 (𝑋1 = 5, 𝑋2 = 3, 𝑌 = 0) = 𝑓 (𝑋1 = 5|𝑌 = 0) · 𝑓 (𝑋2 = 3|𝑌 = 0) · 𝑃(𝑌 = 0)
and

𝑓 (𝑋1 = 5, 𝑋2 = 3, 𝑌 = 1) = 𝑓 (𝑋1 = 5|𝑌 = 1) · 𝑓 (𝑋2 = 3|𝑌 = 1) · 𝑃(𝑌 = 1)
When the input variables are specifically guided by Gaussians with the learned paramaters
presented above, we ultimately predict 𝑌 = 0 if

1
√

2𝜋
𝑒−

1
2 (

5−5
1 )2 · 1

√
2𝜋
𝑒−

1
2 (

3−0
1 )2 · 0.4 =

1
5𝜋
𝑒−

9
2
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is greater than

1
√

2𝜋
𝑒−

1
2 (

5−0
1 )2 · 1

√
2𝜋
𝑒−

1
2 (

3−3
4 )2 · 0.6 =

3
10𝜋

𝑒−
25
2

and otherwise predict 𝑌 = 1.
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