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CS109 February 15, 2024

Conditional Expectation, Introductory Inference

Before you leave lab, make sure you click here so that you’re marked as having attended this
week’s section. The CA leading your discussion section can enter the password needed once
you’ve submitted.

1 Warmups
1.1 Why Multiple Random Variables?
What is a probabilistic model with multiple random variables? What does the term inference
mean? What do you call the probability of an assignment to all variables in a probabilistic model?
Why is that useful? Why can it be hard to represent?

A probabilistic model is a way of defining the relationship between many random variables.
Inference is the act of computing a belief in one (or more) variables based on an observation.
The probability of an assignment to all variables in a probabilistic model is called the joint.
The joint can be used to solve any inference task. The number of ways of assigning values
to variables is exponential in the number of random variables.

1.2 Joint Random Variables Statistics
True or False? The symbol 𝐶𝑜𝑣 is covariance, the symbol ∧ is logical-and, the symbol 𝜌 is
Pearson correlation, the symbol =⇒ is logical implication, and 𝑋 ⊥ 𝑌 is just a fancy way to say
that 𝑋 and 𝑌 are independent.

A statement like ”𝐴 ∼ 𝐵𝑖𝑛(10, 0.5) ∧ 𝐵 ∼ 𝐵𝑖𝑛(10, 0.5) ∧ 𝐴 ⊥ 𝐵 =⇒ 𝐴 + 𝐵 ∼ 𝐵𝑖𝑛(20, 0.5)”
reads ”If 𝐴 and 𝐵 are both distributed as Binomials with the same parameters, then 𝐴 + 𝐵 is a
Binomial as well with the same 𝑝 parameter and an 𝑛 parameter that’s the sum of the those for 𝐴
and 𝐵.”

𝑋 ⊥ 𝑌 =⇒ 𝐶𝑜𝑣(𝑋,𝑌 ) = 0 𝑉𝑎𝑟 (𝑋 + 𝑋) = 2𝑉𝑎𝑟 (𝑋)
𝐶𝑜𝑣(𝑋,𝑌 ) = 0 =⇒ X ⊥ 𝑌 𝑋 ∼ N(0, 1) ∧ 𝑌 ∼ N(0, 1) =⇒ 𝜌(𝑋,𝑌 ) = 1
𝑌 = 𝑋2 =⇒ 𝜌(𝑋,𝑌 ) = 1 𝑌 = 3𝑋 =⇒ 𝜌(𝑋,𝑌 ) = 3

True or False?

True False (... = 4𝑉𝑎𝑟 (𝑋))
False (antecedent necessary, not sufficient) False (don’t know how independent X & Y are)

False (𝑌 = 𝑋 =⇒ ...) False (... = 1)

https://web.stanford.edu/class/cs109/cgi-bin/lab5
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1.3 Random Number of Random Variables
Let 𝑁 be a non-negative integer-valued random variable—that is, a random variable that takes on
values in {0, 1, 2, . . . }. Let 𝑋1, 𝑋2, 𝑋3, . . . be an infinite sequence of independent and identically
distributed random variables (independent of 𝑁), each with mean 𝜇, and 𝑋 =

∑𝑁
𝑖=1 𝑋𝑖 be the sum

of the first 𝑁 of them.

Before doing any work, what do you think 𝐸 [𝑋] will turn out to be? Then show it mathematically
to see if your intuition is correct.

𝐸 [𝑋] = 𝐸

[
𝑁∑︁
𝑖=1

𝑋𝑖

]
=
∑︁
𝑛

𝐸

[
𝑁∑︁
𝑖=1

𝑋𝑖 | 𝑁 = 𝑛

]
𝑝𝑁 (𝑛) =

∑︁
𝑛

𝐸

[
𝑛∑︁
𝑖=1

𝑋𝑖 | 𝑁 = 𝑛

]
𝑝𝑁 (𝑛)

=
∑︁
𝑛

𝐸

[
𝑛∑︁
𝑖=1

𝑋𝑖

]
𝑝𝑁 (𝑛) =

∑︁
𝑛

𝑛𝜇𝑝𝑁 (𝑛) = 𝜇
∑︁
𝑛

𝑛𝑝𝑁 (𝑛) = 𝜇𝐸 [𝑁]

Alternatively,
𝐸 [𝑋] = 𝐸 [𝐸 [𝑋 |𝑁]] = 𝐸 [𝑁𝜇] = 𝜇𝐸 [𝑁]

2 Problems
2.1 CS106A Is Popular
CS106A is Stanford’s introductory programming course and largely considered the primary
gateway to our undergraduate major. Assume next quarter’s offering of CS106A is exactly 600
people, that each of the four undergraduate classes is compromised of 1750 students, and that next
quarter’s CS106A roster is just some random sample of the 7000 undergraduates. Let 𝐴, 𝐵, 𝐶, and
𝐷 count the number of freshman, sophomores, juniors, and seniors in the class of 600.

• Present the joint probability mass function of 𝐴, 𝐵, 𝐶, 𝐷? Restated, present an expression
for 𝑃(𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐, 𝐷 = 𝑑).

𝑃(𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐, 𝐷 = 𝑑) =
(1750

𝑎

) (1750
𝑏

) (1750
𝑐

) (1750
𝑑

)(7000
600

)
• Does your PMF from part a) describe a multinomial random variable? Intuitively justify

your answer.

No, a multinomial random variable requires that trials be independent. If we define a trial in
this case as picking one student to be in CS106A, independence would require us to select
students with replacement, which isn’t the case here.
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• What is the conditional probability distribution of 𝐴 given that 𝐵 +𝐶 = 300? Restated, what
is 𝑃(𝐴 = 𝑎 |𝐵 + 𝐶 = 300)?

This is the same type of problem as that in part a), but we are now distributing 300 students
across two groups, freshmen and seniors.

𝑃(𝐴 = 𝑎 |𝐵 + 𝐶 = 300) =
(1750

𝑎

) ( 1750
300−𝑎

)(3500
300

)
• Do you expect 𝐶𝑜𝑣(𝐴, 𝐵) to be positive, zero, or negative? Justify your answer.

We expect 𝐶𝑜𝑣(𝐴, 𝐵) to be negative. If there are more freshmen in the class, there will be
fewer spots left for sophomores. Incidentally, the 𝜌(𝐴, 𝐵) value—that is, the normalized
covariance—would be very, very slightly negative because of the large number of students
and the large class size.

2.2 Managing Screen Time
Push notifications light up our phones at a rate that’s guided by a Poisson process with an constant
average rate of 5 notifications per hour at all hours, night and day. In an effort to maximize
productivity, you put your phone down and ignore it as much as possible. You do, however,
periodically check it to clear all notifications. You check at 7am when you wake up, noon when you
grab lunch, 5pm as you wrap up classes for the day, and then again at 10pm before you go to sleep.

Let W, X, Y, and Z be Poisson random variables that count the number of push notifications that
have accumulated from 10pm to 7am, 7am to noon, noon to 5pm, and 5pm to 10pm, respectively.
We assume that the number of push notifications that arrive within each interval are all mutually
independent of all other intervals.

• Compute the joint PMF on W, X, Y, and Z.

Since all four variables are independent, the joint PMF is the product of the four single-
dimensional PMFs. That means that:

𝑃(𝑊 = 𝑤, 𝑋 = 𝑥,𝑌 = 𝑦, 𝑍 = 𝑧) = 𝑒−4545𝑤

𝑤!
𝑒−2525𝑥

𝑥!
𝑒−2525𝑦

𝑦!
𝑒−2525𝑧

𝑧!
Ship it!

• Compute the conditional joint PMF on W, X, Y, and Z given that W + X + Y + Z = 150.
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When adding Poisson random variables, it’s nice to have another random variable modelling
that sum. Let’s define 𝑆 = 𝑊 + 𝑋 + 𝑌 + 𝑋 with the understanding that the sum of indepen-
dent Poisson random variables is itself a Poisson where the one parameter is the sum of
the individual ones. That means 𝑆 ∼ 𝑃𝑜𝑖(120) and that 𝑃(𝑆 = 𝑠) = 𝑒−120120𝑠

𝑠! = 𝑒−120120𝑤+𝑧+𝑦+𝑧

𝑠! .

What’s the conditional joint PMF of interest? Check this out:

𝑃(𝑊 = 𝑤, 𝑋 = 𝑥,𝑌 = 𝑦, 𝑍 = 𝑧 |𝑆 = 𝑠)

=
𝑃(𝑆 = 𝑠,𝑊 = 𝑤, 𝑋 = 𝑥,𝑌 = 𝑦, 𝑍 = 𝑧)

𝑃(𝑆 = 𝑠)

=
𝑃(𝑊 = 𝑤, 𝑋 = 𝑥,𝑌 = 𝑦, 𝑍 = 𝑧)

𝑃(𝑆 = 𝑠)

=

𝑒−4545𝑤
𝑤!

𝑒−2525𝑥

𝑥!
𝑒−2525𝑦

𝑦!
𝑒−2525𝑧

𝑧!
𝑒−120120𝑠

𝑠!

=

45𝑤
𝑤!

25𝑥

𝑥!
25𝑦

𝑦!
25𝑧
𝑧!

120𝑤+𝑧+𝑦+𝑧
𝑠!

=

(
𝑠

𝑤, 𝑥, 𝑦, 𝑧

)
( 9
24

)𝑤 ( 5
24

)𝑥 ( 5
24

)𝑦 ( 5
24

)𝑧

The transition from the first line to the second is just stating that 𝑆 = 𝑠’s presence in the joint
PMF is redundant, since 𝑠 = 𝑤 + 𝑥 + 𝑦 + 𝑧. The bottom line here is that the conditional PMF
devolves into a multinomial random variable. When s is 150, our probability is just

𝑃(𝑊 = 𝑤, 𝑋 = 𝑥,𝑌 = 𝑦, 𝑍 = 𝑧 |𝑆 = 150) =
(

150
𝑤, 𝑥, 𝑦, 𝑧

)
( 9
24

)𝑤 ( 5
24

)𝑥 ( 5
24

)𝑦 ( 5
24

)𝑧

• Compute the conditional PMF of X + Y + Z—that’s the number of notifications that arrive
while you’re awake—given that W + X + Y + Z = 150.

This can be derived from first principles much as we derived the conditional joint PMF in the
previous part to this question. Or we can simply merge the three intervals of the multinomial
to arrive at a binomial, i.e., 𝑋 + 𝑌 + 𝑍 |𝑆 = 150 ∼ 𝐵𝑖𝑛(150, 15

24 ) = 𝐵𝑖𝑛(150, 5
8 ).

• Compute 𝐸 [𝑋 + 𝑌 + 𝑍 |𝑊 + 𝑋 + 𝑌 + 𝑍 = 150] and 𝑉𝑎𝑟 (𝑋 + 𝑌 + 𝑍 |𝑊 + 𝑋 + 𝑌 + 𝑍 = 150).

𝐸 [𝑋 +𝑌 + 𝑍 |𝑊 + 𝑋 +𝑌 + 𝑍 = 150] = 150 · 5
8 = 93.75 and 𝑉𝑎𝑟 (𝑋 +𝑌 + 𝑍 |𝑊 + 𝑋 +𝑌 + 𝑍 =

150) = 150 · 5
8 · 3

8 = 35.15625
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2.3 Understanding Bayes Nets

A = 0 A = 1

B = 0 B = 1 B = 0 B = 1

C = 0 0.36 0.20 0.00 0.00
C = 1 0.04 0.20 0.10 0.10

The joint probability table (above) for random variables 𝐴, 𝐵 and 𝐶 is equivalent to the Bayes
network (below). Both give the probability of any combination of the random variables. In the
Bayes network the probability of each random variable is provided given its causal parents.

• Use the Bayes network to explain why 𝑃(𝐴 = 0, 𝐵 = 1, 𝐶 = 1) = 0.20

𝑃(𝐴 = 0, 𝐵 = 1, 𝐶 = 1) = 𝑃(𝐴 = 0)𝑃(𝐵 = 1)𝑃(𝐶 = 1|𝐴 = 0, 𝐵 = 1) = 0.8∗0.5∗0.5 = 0.2.

• What is 𝑃(𝐴 = 1|𝐶 = 1)?

Using the table, we see that

𝑃(𝐴 = 1|𝐶 = 1) = 0.1 + 0.1
0.1 + 0.1 + 0.2 + 0.04

=
0.2

0.44
=

5
11

• Is 𝐴 independent of 𝐵? Explain your answer.

Yes. This follows directly from the structure of the bayesian network, because A and B have
no shared ancestors. Alternatively, note that 𝑃(𝐴 = 𝑎, 𝐵 = 𝑏) = 𝑃(𝐴 = 𝑎)𝑃(𝐵 = 𝑏), which
satisfies the definition of independence.

• Is 𝐴 independent of 𝐵 given 𝐶 = 1? Explain your answer.
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No. From the table, we can see that 𝑃(𝐵 = 1|𝐴 = 0, 𝐶 = 1) = 0.2
0.4+0.2 ≠ 𝑃(𝐵 = 1|𝐴 = 1, 𝐶 =

1) = 0.1
0.1+0.1 . So given 𝐶 = 1, knowing the value of A informs us about the value of B, and

therefore A and B are not conditionally independent given C.

Note: This phenomenon is sometimes called ”Explaining Away” if you’re curious to read
more.
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