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CS109 February 7th, 2024

Continuous Random Variables, Joint Distributions

Before you leave lab, make sure you click here so that you’re marked as having attended this
week’s section. The CA leading your discussion section can enter the password needed once
you’ve submitted.

1 Warmups

1.1 Joint Distributions
a. Given a Normal RV 𝑋 ∼ 𝑁 (𝜇, 𝜎2), how can we compute 𝑃(𝑋 ≤ 𝑥) from the standard

Normal distribution Z with CDF 𝜙?

b. What is a continuity correction and when should we use it?

c. If we have a joint PMF for discrete random variables 𝑝𝑋,𝑌 (𝑥, 𝑦), how can we compute the
marginal PMF 𝑝𝑋 (𝑥)?

a. First, we apply a linear transformation to arrive at Φ((𝑥 − 𝜇)/𝜎). We then look up
the value we’ve computed in the Standard Normal Table (or we rely on Python to
compute the probability for us).

b. Continuity correction is used when a Normal distribution is used to approximate a
Binomial. Since a Normal is continuous and Binomial is discrete, we have to use a
continuity correction to discretize the Normal. The continuity correction makes it so
that the normal variable is evaluated from + or - 0.5 increments from the desired 𝑘

value.

c. The marginal distribution is 𝑝𝑋 (𝑥) =
∑

𝑦 𝑝𝑋,𝑌 (𝑥, 𝑦)

1.2 Independent Random Variables
a. What distribution does the sum of two independent binomial RVs 𝑋 + 𝑌 have, where 𝑋 ∼

𝐵𝑖𝑛(𝑛1, 𝑝) and 𝑌 ∼ 𝐵𝑖𝑛(𝑛2, 𝑝)? Include any parameters with your answer.

b. What distribution does the sum of two independent Poisson RVs 𝑋 + 𝑌 have, where 𝑋 ∼
Poi(𝜆1) and 𝑌 ∼ Poi(𝜆2)? Include any parameters with your answer.

a. Binomial: 𝑋 + 𝑌 ∼ 𝐵𝑖𝑛(𝑛1 + 𝑛2, 𝑝)

b. Poisson: 𝑋 + 𝑌 ∼ Poi(𝜆1 + 𝜆2)

https://web.stanford.edu/class/cs109/cgi-bin/lab4
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2 Marguerite Gets Some Competition
In the late 1880s, Stanford began running a horse and twelve-person buggy service from the Stan-
ford Quad to the train station just off campus. The name of this shuttling service was chosen to be
Marguerite, which was the name of the favorite horse of some Stanford bigwig of the time. The
horse-and-carriage operation was retired around 1910 and replaced with electric streetcars, which
themselves were replaced with buses around 1930. The service has grown substantially since, and
the buses have been upgraded several times. The service, however, has retained its name since the
very beginning.

Several Stanford horse enthusiasts have recently revived the horse-and-buggy service to compete
with Marguerite, and they’ve given it the name Hildegard. Now, when you need a ride from the
Quad to the train station, you have two options!

You arrive at the Quad, headed to the train station, and you’re equally happy to take either of the
two independent services. You arrive precisely at 8:00am, which is the time that both services
start for the day. The number of minutes you need to wait for a Marguerite bus is modeled by a
discrete Uniform random variable 𝑀 ∼ 𝑈𝑛𝑖(0, 20), whereas the number of minutes you need
to wait for a Hildegard horse-and-buggy is modeled by a discrete Poisson random variable 𝐻 ∼
𝑃𝑜𝑖(10). (Yes, it’s technically possible that Hildegard never arrives.)

a. What is the probability that Marguerite and Hildegard both arrive at 𝑡 = 6 minutes?

We can represent the events that the Marguerite and Hildegard arrive at 𝑡 = 6 minutes as
𝑀 = 6 and 𝐻 = 6, respectively. Write

𝑃(𝑀 = 6, 𝐻 = 6) = 𝑃(𝑀 = 6)𝑃(𝐻 = 6) (𝑀 ⊥ 𝐻)

=
1

21
· 106𝑒−10

6!
.

b. What is the conditional probability that 𝐻 < 𝑀 , given 𝑀 = 𝑚—that is, what is 𝑃(𝐻 <

𝑀 |𝑀 = 𝑚)? Express your answer as a sum.

We were looking for something along the lines of this:

𝑃(𝐻 < 𝑀 |𝑀 = 𝑚) = 𝑃(𝐻 < 𝑚) (specifying value of 𝑀)

=

𝑚−1∑︁
ℎ=0

𝑃(𝐻 = ℎ)

=

𝑚−1∑︁
ℎ=0

10ℎ𝑒−10

ℎ!
.

c. What is the unconditional probability that 𝐻 < 𝑀 , i.e., what is 𝑃(𝐻 < 𝑀)? Express your
answer as a double sum that leverages your answer to part b.
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We were looking for something like this:

𝑃(𝐻 < 𝑀) =
∑︁
𝑚

𝑃(𝐻 < 𝑀, 𝑀 = 𝑚) (Law of Total Probability)

=
∑︁
𝑚

𝑃(𝐻 < 𝑀 |𝑀 = 𝑚)𝑃(𝑀 = 𝑚) (Chain Rule)

=

20∑︁
𝑚=0

1
21

· 𝑃(𝐻 < 𝑀 |𝑀 = 𝑚)

=
1

21

20∑︁
𝑚=0

𝑚−1∑︁
ℎ=0

10ℎ𝑒−10

ℎ!
(from part b)

d. What is the CDF of your waiting time for the first of the two to arrive? You should leave
your answer in summation form.

Let 𝑆 be the random variable representing your waiting time for the first of the two to ar-
rive. Then we have 𝑆 = min{𝑀, 𝐻}, and accordingly that 𝑆 ∈ {0, 1, . . . , 20}. Letting 𝐹𝑆 be
the CDF of 𝑆 and 𝑠 ∈ {0, 1, . . . , 20}, write

𝐹𝑆 (𝑠) = 𝑃(𝑆 ≤ 𝑠) (definition of CDF)
= 𝑃(min{𝑀, 𝐻} ≤ 𝑠) (definition of 𝑆)
= 𝑃(𝑀 ≤ 𝑠 ∪ 𝐻 ≤ 𝑠)

= 1 − 𝑃

( (
𝑀 ≤ 𝑠 ∪ 𝐻 ≤ 𝑠

)𝐶)
= 1 − 𝑃(𝑀 > 𝑠, 𝐻 > 𝑠) (DeMorgan’s Law)
= 1 − 𝑃(𝑀 > 𝑠)𝑃(𝐻 > 𝑠) (𝑀 ⊥ 𝐻)

= 1 −
( 20∑︁
𝑚=𝑠+1

𝑃(𝑀 = 𝑚)
) ( ∞∑︁

ℎ=𝑠+1
𝑃(𝐻 = ℎ)

)
= 1 −

( 20∑︁
𝑚=𝑠+1

1
21

) ( ∞∑︁
ℎ=𝑠+1

10ℎ𝑒−10

ℎ!

)
= 1 −

(
20 − 𝑠

21

) (
1 −

𝑠∑︁
ℎ=0

10ℎ𝑒−10

ℎ!

)
.

3 Burrow Smoke Detectors and Joint Probability Distributions
Burrow Labs has taken on other startups in the home safety and security space and has recently
started marketing a new smoke detector. Burrow’s smoke detectors rely on 𝐶𝑂2 sensors that
eventually fail, and that failure time dictates the average product lifetime of the smoke detector.
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Burrow manufactures three quarters of its smoke detectors in central Idaho, and the rest are man-
ufactured in suburban Maine. Any single smoke detector’s product lifetime can be modeled as a
Exponential random variable.

Each of the two locations sources its 𝐶𝑂2 sensors from different suppliers, so the smoke detec-
tors manufactured in Maine have an average product lifetime of 7 years and the smoke detectors
manufactured in Idaho have an average product lifetime of 6 years. All smoke detectors are sold
online, so aside from the fact that a smoke detector is three times more likely to ship from the
Idaho facility, you can’t tell by looking at a single smoke detector where it was manufactured.

Let 𝑇 model the amount of time that passes until the 𝐶𝑂2 sensor (and therefore the smoke detec-
tor) fails, and let 𝑀 be a discrete random variable that takes on the value of 1 for a smoke detec-
tor manufactured in Maine, and 0 otherwise.

a. Present the cumulative distribution and probability density functions for the random vari-
able 𝑇 . Both your CDF and your PDF should be analytic functions on 𝑡.

The Law of Total Probability applies to all probabilities, including cumulative ones rele-
vant to continuous distributions. That means that:

𝐹𝑇 (𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑃(𝑇 ≤ 𝑡 |𝑀 = 1) · 𝑃(𝑀 = 1) + 𝑃(𝑇 ≤ 𝑡 |𝑀 = 0) · 𝑃(𝑀 = 0)

= (1 − 𝑒−𝑡/7) · 1
4
+ (1 − 𝑒−𝑡/6) · 3

4

= 1 − 1
4
𝑒−𝑡/7 − 3

4
𝑒−𝑡/6

𝑓𝑇 (𝑡) = 𝐹′
𝑇 (𝑡) =

1
28

𝑒−𝑡/7 + 3
24

𝑒−𝑡/6

Of course, these are all defined for non-negative values of 𝑡.

b. Compute the probability that a smoke detector was manufactured in Maine, given that it
lasts more than 15 years. If needed, you can keep your answer in terms of 𝐹𝑇 (15) or 𝑓𝑇 (15)
from part (a). However, any conditional expression of the form 𝑃(·|·) or 𝑓 (·|·) must be
evaluated.

We once again rely on a hybrid form of Bayes’s Theorem, although this time the probabili-
ties require we integrate an accumulation of probability densities on T for t greater than 15
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hours.

𝑃(𝑀 = 1|𝑇 > 15) = 𝑃(𝑇 > 15|𝑀 = 1)𝑃(𝑀 = 1)
𝑃(𝑇 > 15)

=
1
4
∗ 1 − 𝑃(𝑇 ≤ 15|𝑀 = 1)

1 − 𝑃(𝑇 ≤ 15)

=
1
4
∗ 1 − (1 − 𝑒−15/7)

1 − 𝐹𝑇 (15)

=
1
4
∗ 𝑒−15/7

1 − 𝐹𝑇 (15)
= 0.32268

4 Elections
We would like to see how we could predict an election between two candidates in France (A and
B), given data from 10 polls. For each of the 10 polls, we report below their sample size, how
many people said they would vote for candidate A, and how many people said they would vote
for candidate B. Not all polls are created equal, so for each poll we also report a value ”weight”
which represents how accurate we believe the poll was. The data for this problem can be found on
the class website in polls.csv:

a. First, assume that each sample in each poll is an independent experiment of whether or not
a random person in France would vote for candidate A (disregard weights).

• Calculate the probability that a random person in France votes for candidate A.
• Assume each person votes for candidate A with the probability you’ve calculated and

otherwise votes for candidate B. If the population of France is 64,888,792, what is the
probability that candidate A gets more than half of the votes?
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b. Nate Silver at fivethirtyeight pioneered an approach called the ”Poll of Polls” to predict
elections. For each candidate A or B, we have a random variable 𝑆𝐴 or 𝑆𝐵 which represents
their strength on election night (like ELO scores). The probability that A wins is 𝑃(𝑆𝐴 >

𝑆𝐵).

• Identify the parameters for the random variables 𝑆𝐴 and 𝑆𝐵. Both 𝑆𝐴 and 𝑆𝐵 are de-
fined to be normal with the following parameters:

• We will calculate 𝑃(𝑆𝐴 > 𝑆𝐵) by simulating 100,000 fake elections. In each fake elec-
tion, we draw a random sample for the strength of A from 𝑆𝐴 and a random sample
for the strength of B from 𝑆𝐵. If 𝑆𝐴 is greater than 𝑆𝐵, candidate A wins. What do we
expect to see if we simulate so many times? What do we actually see?

c. Which model, the one from (a) or the model from (b) seems more appropriate? Why might
that be the case? On election night candidate A wins. Was your prediction from part (b)
”correct”?

a. 𝑃(random person votes for A) = 𝑣𝑜𝑡𝑒𝑠 𝑓 𝑜𝑟𝐴

𝑡𝑜𝑡𝑎𝑙𝑣𝑜𝑡𝑒𝑠
= 4881

7453 = 0.655
Now, let X be the number of votes for candidate A. We assume that X
˜𝐵𝑖𝑛(64888792, 0.655).

• Since n is so large, we can approximate X using a normal Y ˜𝑁 (𝑛𝑝, 𝑛𝑝(1 − 𝑝)).

• 𝜇 = 𝑛𝑝 = 42502158.76, Variance = 𝑛𝑝(1 − 𝑝) = 14663244.77 Std Dev = 3829.26

• Votes to win = 64888792
2 = 32444396

• 𝑃(A gets enough votes) = 𝑃(𝑋 > 32444396) ≈ 𝑃(𝑌 > 32444396.5) = 1.00

b. 𝑆𝐴 ˜𝑁 (5.324, 16.436)
𝑆𝐵 ˜𝑁 (2.926, 16.436)
𝑃(𝑆𝐴 > 𝑆𝐵) ≈ 0.66
We can figure this out through simulation by drawing from 𝑆𝐴 and 𝑆𝐵 100,000 times and
seeing how often the 𝑆𝐴 value is greater than the 𝑆𝐵 value. Later in the quarter, when
we learn the convolution of independent Gaussians, you will be able to figure this out
mathematically, without sampling.

c. Algorithm (a) makes very few assumptions, and simplicity can be useful, but it does
assume that each voter is independent, which we definitely know isn’t the case in real
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elections. Algorithm (b) allows us to model bias (using the weights we incorporated), and
doesn’t think of each voter as necessarily independent.
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