
CS109 January 24, 2024
Section 2: Conditional Probabililty and Bayes

Chris Piech, Mehran Sahami, Jerry Cain, Lisa Yan, and numerous CS109 CA’s.

Overview of Section Materials
The warm-up questions provided will help students practice concepts introduced in lectures. The section prob-
lems are meant to apply these concepts in more complex scenarios similar to what you will see in problem sets
and exams. In fact, many of them are old exam questions.

Before you leave lab, make sure you click here so that you’re marked as having attended this week’s section. The
CA leading your discussion section can enter the password needed once you’ve submitted.

Warm-ups
1. Definitions: Cite Bayes’ Theorem. Can you explain why 𝑃(𝐴|𝐵) is different than 𝑃(𝐵 |𝐴)?

2. True or False. Note that true means true for ALL cases.

(a) In general, 𝑃(𝐴𝐵|𝐶) = 𝑃(𝐵 |𝐶)𝑃(𝐴|𝐵𝐶)
(b) If 𝐴 and 𝐵 are independent, so are 𝐴 and 𝐵𝐶 .

1. Bayes’ Theorem: 𝑃(𝐸 |𝐹) = 𝑃(𝐹 |𝐸)𝑃(𝐸)
𝑃(𝐹)

2. (a) True

𝑃(𝐴𝐵|𝐶) Left side
𝑃(𝐴𝐵𝐶)
𝑃(𝐶) Def’n Cond’n Prob

𝑃(𝐴|𝐵𝐶)𝑃(𝐵𝐶)
𝑃(𝐶) Chain Rule

𝑃(𝐴|𝐵𝐶)𝑃(𝐵 |𝐶)𝑃(𝐶)
𝑃(𝐶) Chain Rule

𝑃(𝐴|𝐵𝐶)𝑃(𝐵 |𝐶) Cancellation
𝑃(𝐵 |𝐶)𝑃(𝐴|𝐵𝐶) ■

https://web.stanford.edu/class/cs109/cgi-bin/lab2


(b) True
Start from Law of Total Probability (this is a good candidate for a starting point because it relates 𝐴,
𝐵 and 𝐵∁). We will employ the assumption that 𝐴 ⊥ 𝐵 (i.e. 𝐴 is independent of 𝐵) somewhere, and
then try to see if we can arrive at the equation 𝑃(𝐴𝐵∁) = 𝑃(𝐴)𝑃(𝐵∁) (this is what it means for 𝐴 and
𝐵∁ to be independent mathematically).

𝑃(𝐴) = 𝑃(𝐴𝐵) + 𝑃(𝐴𝐵∁) LOTP

𝑃(𝐴) = 𝑃(𝐴)𝑃(𝐵) + 𝑃(𝐴𝐵∁) 𝐴 ⊥ 𝐵

𝑃(𝐴) − 𝑃(𝐴)𝑃(𝐵) = 𝑃(𝐴𝐵∁) Subtract 𝑃(𝐴)𝑃(𝐵)
𝑃(𝐴) (1 − 𝑃(𝐵)) = 𝑃(𝐴𝐵∁) Factor 𝑃(𝐴)

𝑃(𝐴)𝑃(𝐵∁) = 𝑃(𝐴𝐵∁) 1 − 𝑃(𝐵) := 𝑃(𝐵∁)
𝑃(𝐴𝐵∁) = 𝑃(𝐴)𝑃(𝐵∁) ■

1 Malware Detection
Jerry’s niece, Lauren, started 8𝑡ℎ grade this past September! But because there are so many snowstorms each
school year that require students be schooled remotely, her middle school has provided her with an old laptop so
she can Zoom in for class. To better protect its own equipment from malware and viruses, the school installed
two browser extensions to scrutinize all web downloads. Each download is either safe (event 𝑆) or unsafe (event
𝑆𝐶), and all downloads are examined by both extensions. The first extension marks the download as either safe
(event 𝐴) or unsafe (event 𝐴𝐶), and the second extension marks the download as safe (event 𝐵) or unsafe (event
𝐵𝐶).

Assume that 94% of Lauren’s web downloads are safe, and that:

• the first browser extension accurately marks unsafe downloads as unsafe with probability 0.93, but improp-
erly marks safe downloads as unsafe with probability 0.04.

• the second browser extension accurately marks unsafe downloads as unsafe with probability 0.85, but im-
properly marks safe downloads as unsafe with probability 0.02.

Assume that given a download is safe, the two browser extensions independently mark that download as safe.
Similarly, the two browser extensions independently mark unsafe downloads as unsafe.

a. Assuming a downloaded document is safe, what is the probability that at least one of the two extensions
marks the download as unsafe?

Let’s jot down everything we’ve been given:



𝑃(𝑆) = 0.94, so 𝑃(𝑆𝐶) = 1 − 𝑃(𝑆) = 0.06

𝑃(𝐴𝐶 |𝑆𝐶) = 0.93, so 𝑃(𝐴|𝑆𝐶) = 1 − 𝑃(𝐴𝐶 |𝑆𝐶) = 0.07
𝑃(𝐴𝐶 |𝑆) = 0.04, so 𝑃(𝐴|𝑆) = 1 − 𝑃(𝐴𝐶 |𝑆) = 0.96

𝑃(𝐵𝐶 |𝑆𝐶) = 0.85, so 𝑃(𝐵 |𝑆𝐶) = 1 − 𝑃(𝐵𝐶 |𝑆𝐶) = 0.15
𝑃(𝐵𝐶 |𝑆) = 0.02, so 𝑃(𝐵 |𝑆) = 1 − 𝑃(𝐵𝐶 |𝑆) = 0.98

𝑃(𝐴𝐵 |𝑆) = 𝑃(𝐴|𝑆)𝑃(𝐵 |𝑆)
𝑃(𝐴𝐶𝐵𝐶 |𝑆𝐶) = 𝑃(𝐴𝐶 |𝑆𝐶)𝑃(𝐵𝐶 |𝑆𝐶)

The probability that one or both extensions mark a safe download as unsafe is more easily computed as 1
minus the probability that both mark a safe download as safe.

𝑃((𝐴𝐵)𝐶 |𝑆) = 1 − 𝑃(𝐴𝐵|𝑆)
= 1 − 𝑃(𝐴|𝑆)𝑃(𝐵 |𝑆)
= 1 − 0.96 · 0.98
= 0.0592

The second line above follows from the first because 𝐴 and 𝐵 are conditionally independent given 𝑆.

b. Assuming a downloaded document is safe, what is the probability that exactly one of the two extensions
marks the download as unsafe?

We’re still in the world of safe downloads, so:

𝑃(𝐴𝐶𝐵 |𝑆) + 𝑃(𝐴𝐵𝐶 |𝑆) = 𝑃(𝐴𝐶 |𝑆)𝑃(𝐵 |𝑆) + 𝑃(𝐴|𝑆)𝑃(𝐵𝐶 |𝑆)
= 0.04 · 0.98 + 0.96 · 0.02
= 0.0584

Note that if 𝐴 and 𝐵 are conditionally independent given 𝑆, then so are 𝐴 and 𝐵𝐶 , as are 𝐴𝐶 and 𝐵.

c. Given that both extensions mark the download as safe, what is the probability that the download is unsafe?

We are interested in 𝑃(𝑆𝐶 |𝐴𝐵), which according to Bayes’ Theorem is 𝑃(𝐴𝐵|𝑆𝐶 )𝑃(𝑆𝐶 )
𝑃(𝐴𝐵) . Some of these prob-

abilities are given, but others have to be computed from scratch.



𝑃(𝐴𝐵|𝑆𝐶) = 𝑃(𝐴|𝑆𝐶) · 𝑃(𝐵 |𝑆𝐶)
= 0.07 · 0.15
= 0.0105

𝑃(𝑆𝐶) = 0.06
𝑃(𝐴𝐵) = 𝑃(𝐴𝐵|𝑆)𝑃(𝑆) + 𝑃(𝐴𝐵|𝑆𝐶)𝑃(𝑆𝐶)

= 𝑃(𝐴|𝑆)𝑃(𝐵 |𝑆)𝑃(𝑆) + 0.0105 · 0.06
= 0.96 · 0.98 · 0.94 + 0.0105 · 0.06
= 0.884982

Now we can compute 𝑃(𝑆𝐶 |𝐴𝐵) as 0.0105·0.06
0.884982 , or 0.000712. That’s less than 1

10
𝑡ℎ of a percent, which

means the probability an unsafe download goes undetected is super small.

d. Are the unconditioned events where the two extensions mark a download as safe independent? Why or
why not?

Nope. Intuitively, you would expect the second extension is more likely to flag a download as safe when
the first extension does, and vice versa. Mathematically, we examine 𝑃(𝐴𝐵), which we’ve already com-
puted to be 0.88498, and compare that to 𝑃(𝐴)𝑃(𝐵). We haven’t computed 𝑃(𝐴) or 𝑃(𝐵) yet, so let’s do
that now:

𝑃(𝐴) = 𝑃(𝐴|𝑆)𝑃(𝑆) + 𝑃(𝐴|𝑆𝐶)𝑃(𝑆𝐶)
= 0.96 · 0.94 + 0.07 · 0.06
= 0.9066

𝑃(𝐵) = 𝑃(𝐵 |𝑆)𝑃(𝑆) + 𝑃(𝐵 |𝑆𝐶)𝑃(𝑆𝐶)
= 0.98 · 0.94 + 0.15 · 0.06
= 0.9302

𝑃(𝐴)𝑃(𝐵) = 0.9066 · 0.9302 = 0.84332 ≠ 0.884982 = 𝑃(𝐴𝐵)

That’s a solid mathematical defense that 𝐴 and 𝐵 are not independent.

2 Taking Expectation: Breaking Vegas
Preamble: When a random variable fits neatly into a family we’ve seen before (e.g. Binomial), we get its expec-
tation for free. When it does not, we have to use the definition of expectation.

Problem: If you bet on “Red” in Roulette, there is 𝑝 = 18/38 that you with win $Y and a (1− 𝑝) probability that
you lose $Y. Consider this algorithm for a series of bets:

Let Y = $1. First you bet Y. If you win, then stop. If you lose, then set Y to be 2Y and repeat.

What are your expected winnings when you stop? It will help to recall that the sum of a geometric series 𝑎0+𝑎1+
𝑎2 + · · · = 1

1−𝑎 if 0 < 𝑎 < 1. Vegas breaks you: Why doesn’t everyone do this?



Let X be the number of dollars that your earn.

The possible values of x are from the outcomes of: winning on your first bet, winning on your second bet, and so
on.
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Real games have maximum bet amounts. You have finite money and casinos can kick you out. But, if you had no
betting limits and infinite money, then go for it! (and tell me which planet you are living on).

3 Conditional Probabilities: Missing Not at Random

Preamble: We have three big tools for manipulating conditional probabilities:

• Definition of conditional probability: 𝑃(𝐸𝐹) = 𝑃(𝐸 |𝐹)𝑃(𝐹)

• Law of Total Probability: 𝑃(𝐸) = 𝑃(𝐸𝐹) + 𝑃(𝐸𝐹𝐶) = 𝑃(𝐸 |𝐹)𝑃(𝐹) + 𝑃(𝐸 |𝐹𝐶)𝑃(𝐹𝐶)

• Bayes Rule: 𝑃(𝐸 |𝐹) = 𝑃(𝐹 |𝐸)𝑃(𝐸)
𝑃(𝐹) =

𝑃(𝐹 |𝐸)𝑃(𝐸)
𝑃(𝐹 |𝐸)𝑃(𝐸)+𝑃(𝐹 |𝐸𝐶 )𝑃(𝐸𝐶 )

This is a good time to commit these three to memory and start thinking about when each of them is useful.

Problem: You collect data on whether or not people intend to vote for Ayesha, a candidate in an upcoming elec-
tion. You send an electronic poll to 100 randomly chosen people. You assume all 100 responses are independent
and identically distributed.

User Response Count

Responded that they will vote for Ayesha 40
Responded that they will not vote for Ayesha 45
Did not respond 15

Let 𝐴 be the event that a person responds saying they’ll vote for Ayesha. Let 𝑀 be the event that a user did not
respond to the poll. We are interested in estimating 𝑃(𝐴), though computing that estimate is difficult, given that
15 users didn’t actually respond.

a. What is the probability that a user said they will vote for Ayesha and that they responded to the poll 𝑃(𝐴 and 𝑀𝐶)?



b. Which formula from class would you use to calculate 𝑃(𝐴)? Your formula should rely on the context that
voters for Ayesha are in one of two (mutually exclusive) groups: those that missed the poll, and those that
did not.

c. Calculate the 𝑃(𝐴). You estimate that the probability that a voter is missing, given that they were going to
vote for Ayesha is 𝑃(𝑀 |𝐴) = 1

5 .

a. 𝑃(𝐴 and 𝑀𝐶) = 40
100 . The 𝑀𝐶 part is redundant.

b. The law of total probability. It breaks down 𝑃(𝐴) into two parts, the part which intersects with 𝑀 and the
part that intersections with 𝑀𝐶 .

𝑃(𝐴) = 𝑃(𝐴 and 𝑀) + 𝑃(𝐴 and 𝑀𝐶)

c.

𝑃(𝐴) = 𝑃(𝐴 and 𝑀𝐶) + 𝑃(𝐴 and 𝑀) Law of total probability

=
40

100
+ 𝑃(𝐴 and 𝑀) From part a

=
40

100
+ 𝑃(𝑀 |𝐴)𝑃(𝐴) Chain rule

𝑃(𝐴) − 𝑃(𝑀 |𝐴)𝑃(𝐴) = 40
100

The rest is algebra

𝑃(𝐴) · [1 − 𝑃(𝑀 |𝐴)] = 40
100

𝑃(𝐴) · 4
5
=

40
100

𝑃(𝐴) = 40
100

· 5
4

𝑃(𝐴) = 1
2

4 Sending Bits to Space

Preamble: When sending binary data to satellites (or really over any noisy channel), the bits can be flipped with
high probability. In 1947, Richard Hamming developed a system to more reliably send data. By using Error Cor-
recting Hamming Codes, you can send a stream of 4 bits along with 3 redundant bits. If zero or one of the seven
bits are corrupted, using error correcting codes, a receiver can identify the original 4 bits.

Problem: Lets consider the case of sending a signal to a satellite where each bit is independently flipped with
probability 𝑝 = 0.1.

a. If you send 4 bits, what is the probability that the correct message was received (i.e. none of the bits are
flipped).

b. If you send 4 bits, with 3 Hamming error correcting bits, what is the probability that an interpretable mes-
sage (i.e. a message with zero or one errors) was received?



c. Instead of using Hamming codes, you decide to send 100 copies of each of the four bits. If for every single
bit, more than 50 of the copies are not flipped, the signal will be correctable. What is the probability that a
correctable message was received?

Hamming codes are super interesting. It’s worth looking up if you haven’t seen them before!

a. Let Y be the number of 4 bits corrupted. Then 𝑃(𝑌 = 𝑘) is given as:

𝑃(𝑌 = 0) =
(
4
0

)
(0.1)0(0.9)4 = 0.656

b. Let Z be the number of 7 bits corrupted. A correctable message is received if 𝑍 equals 0 or 1:

𝑃(correctable) = 𝑃(𝑍 = 0) + 𝑃(𝑍 = 1)

=

(
7
0

)
(0.1)0(0.9)7 +

(
7
1

)
(0.1)1(0.9)6 = 0.850

That is a 30% improvement!

c. Let 𝑋𝑖 be the number of copies of bit 𝑖 which are not corrupted. We can represent each as a random vari-
able as we did in parts a and b.

𝑃(correctable) =
4∏
𝑖=1

𝑃(𝑋𝑖 > 50)

=

4∏
𝑖=1

100∑︁
𝑗=51

𝑃(𝑋𝑖 = 𝑗)

=

4∏
𝑖=1

100∑︁
𝑗=51

(
100
𝑗

)
(0.9) 𝑗 (0.1)100− 𝑗

=

( 100∑︁
𝑗=51

(
100
𝑗

)
(0.9) 𝑗 (0.1)100− 𝑗

)4
> 0.999

But now you need to send 400 bits, instead of the 7 required by hamming codes :-).

Extra: Explanation of the ”Hamming(7,4)” technique



If we are trying to transmit 4 bits, we can send an additional 3 ”parity” bits that we can use to correct our orig-
inal message if a bit gets flipped due to an error in transmission. Consider the diagram. The data bits are 𝑑1
through 𝑑4. The ”parity” bits are 𝑝1 through 𝑝3. A parity bit is set to whatever value would make it’s large cir-
cle have an even number of bits. For example, the green circle consists of 𝑝1, 𝑑1, 𝑑2, and 𝑑4. If 𝑑1 = 1, 𝑑2 = 1,
and 𝑑4 = 1, then 𝑝1 would be set to 1 in order to ensure there are an even number of bits in that circle (in this
case, 4 bits).

Convince yourself that a single error which appeared in any bit could be identified and corrected! For example,
if 𝑑2 is flipped, it would throw off the parity for the green and red circles. Therefore, flipping 𝑑2 back is the only
way to correct the parity. As another example, if 𝑝2 is flipped, then only the blue circle would have a parity is-
sue, and flipping 𝑝2 back is the unique solution to fixing the parity.
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