26: Intro to Deep Learning

Jerry Cain March 11, 2024

Lecture Discussion on Ed

Deep Learning

Innovations in deep learning

Making history

AlphaGo is the first computer program to defeat a professional human Go player, the first to defeat a Go world champion, and is arguably the strongest Go player in history.

Deep learning and neural networks are cores theories and technologies behind the current Al revolution.

Errata:

- Checkers is the last **solved** game (from game theory, where perfect player outcomes can be fully predicted from any gameboard).
 - https://en.wikipedia.org/wiki/Solved_game
- The first machine learning algorithm defeated a world champion in Chess in 1996.

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

AlphaGO (2016) Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Computers making art

The Next Rembrandt https://medium.com/@DutchDigital/thenext-rembrandt-bringing-the-old-masterback-to-life-35dfb1653597

A Neural Algorithm of Artistic Style https://arxiv.org/abs/1508.06576 https://github.com/jcjohnson/neural-style

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Google Deep Dream https://ai.googleblog.com/2015/06/in ceptionism-going-deeper-intoneural.html

Detecting skin cancer

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." Nature 542.7639 (2017): 115-118.

Deep learning

def Deep learning is

maximum likelihood estimation with neural networks.

def A neural network is,

at its core, many logistic regression units stacked on top of each other.

[1,0,...,1]
$$\hat{y}$$
, output > 0.5? Yes. Predict 1 (regressions)

Logistic Regression Model

$$X o hinspace{0.5}{ hinspa$$

Logistic Regression Model

$$X o heta_0 + \sum_{j=1}^m \theta_j X_j o heta_0 + \sum_{j=1}^m \theta_j X_j o heta_0 o heta_0$$

One neuron = One logistic regression

Biological basis for neural networks

A neuron

One neuron = one logistic regression

Your brain

Neural network = many logistic regressions

Digit recognition example

Input image

Input feature vector

Output label

$$\mathbf{x}^{(i)} = [0,0,0,0,\dots,1,0,0,1,\dots,0,0,1,0]$$

$$y^{(i)} = 0$$

$$\boldsymbol{x}^{(i)} = [0,0,1,1,\dots,0,1,1,0,\dots,0,1,0,0]$$

$$y^{(i)} = 1$$

We make feature vectors from digitized pictures of numbers.

x, input features

(pixels, on/off)

x, input features

(pixels, on/off)

Take two big ideas from Logistic Regression

Review

Introducing: The Neural network

Neural network

Why doesn't a linear model introduce "complexity"?

Neural network:

1. for j = 1, ..., |h|:

$$h_j = \sigma\left(\theta_j^{(h)^T} \boldsymbol{x}\right)$$

2.
$$\hat{y} = \sigma(\theta^{(\hat{y})^T} h) = P(Y = 1 | X = x)$$

1. \hat{y} , output h, hidden layer x, input features

Linear network:

1. for j = 1, ..., |h|:

$$h_j = \theta_j^{(h)^T} \boldsymbol{x}$$

2.
$$\hat{y} = \sigma\left(\theta^{(\hat{y})^T}\boldsymbol{h}\right) = P(Y = 1|\boldsymbol{X} = \boldsymbol{x})$$

Why doesn't a linear model introduce "complexity"?

Neural network:

1. for j = 1, ..., |h|:

$$h_j = \sigma\left(\theta_j^{(h)^T} \boldsymbol{x}\right)$$

2.
$$\hat{y} = \sigma(\theta^{(\hat{y})^T} h) = P(Y = 1 | X = x)$$

Linear network:

1. for j = 1, ..., |h|:

$$h_j = \theta_j^{(h)^T} \boldsymbol{x}$$

2.
$$\hat{y} = \sigma\left(\theta^{(\hat{y})^T}\boldsymbol{h}\right) = P(Y = 1|\boldsymbol{X} = \boldsymbol{x})$$

The linear model is effectively a single logistic regression with |x| parameters.

Demonstration

https://adamharley.com/nn_vis/

Neural networks

A neural network (like logistic regression) gets intelligence from its parameters θ .

Training

- Learn parameters θ
- Find θ_{MLE} that maximizes likelihood of training data (MLE)

Testing/ Prediction

For input feature vector X = x:

- Use parameters to compute $\hat{y} = P(Y = 1 | X = x)$
- Classify instance as: otherwise

Neural networks

A neural network (like logistic regression) gets intelligence from its parameters θ .

Training

- Learn parameters θ
- Find θ_{MLE} that maximizes likelihood of training data (MLE)

How do we learn the $|x| \cdot |h| + |h|$ parameters? Gradient ascent + chain rule!

Training: Logistic Regression

Review

1. Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$\hat{y} = \sigma(\theta^{T} \mathbf{x}^{(i)}) = P(Y = 1 | \mathbf{X} = \mathbf{x})$$

Compute gradient

Find |x| parameters

Optimize

initialize params repeat many times: compute gradient params $+= \eta * gradient$

Training: Neural networks

1. Optimization problem:

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \underset{\theta}{\operatorname{arg max}} LL(\theta)$$

- 2. Compute gradient
- 3. Optimize

1. Same output \hat{y} , same log conditional likelihood

for
$$j = 1, ..., |\mathbf{h}|$$
:
$$h_j = \sigma\left(\theta_j^{(h)} \mathbf{x}\right)$$

$$\hat{y} = \sigma\left(\theta^{(\hat{y})^T}\boldsymbol{h}\right) = P(Y = 1|\boldsymbol{X} = \boldsymbol{x})$$

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$L(\theta) = \prod_{i=1}^{n} P(Y = y^{(i)} | X = x^{(i)}, \theta) \quad \text{Binary class labels: } Y \in \{0, 1\}$$

$$= \prod_{i=1}^{n} (\hat{y}^{(i)})^{y^{(i)}} (1 - \hat{y}^{(i)})^{1 - y^{(i)}}$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

(model is a little more complicated)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

for
$$j=1,...,|m{h}|$$
:
$$h_j = \sigma\left(\overline{\theta_j^{(h)}}^T m{x}\right) \ \ \text{dimension} \ |m{x}|$$

$$\hat{y} = \sigma(\theta^{(\hat{y})}^T h) = P(Y = 1 | X = x)$$
 dimension $|h|$

To optimize for log conditional likelihood, we now need to find:

$$|h| \cdot |x| + |h|$$
 parameters

2. Compute gradient

Optimization problem:

$$\theta_{MLE} = \underset{\theta}{\arg \max} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \underset{\theta}{\arg \max} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$h_j = \sigma \left(\theta_j^{(h)}^T \mathbf{x}\right) \text{ for } j = 1, ..., |\mathbf{h}| \qquad \hat{y} = \sigma \left(\theta^{(\hat{y})}^T \mathbf{h}\right)$$

- Compute gradient
- Take gradient with respect to all θ parameters

Optimize

Calculus refresher #1:

Derivative(sum) = sum(derivative)

Calculus refresher #2: Chain rule 😽 🦮 😽

ptimize

Optimization problem:

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \underset{\theta}{\operatorname{arg max}} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$h_j = \sigma\left(\theta_j^{(h)}^T \mathbf{x}\right) \text{ for } j = 1, ..., |\mathbf{h}| \qquad \hat{y} = \sigma\left(\theta^{(\hat{y})}^T \mathbf{h}\right)$$

2. Compute gradient

Take gradient with respect to all θ parameters

Optimize

Training a neural net

1. Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

2. Compute

Wait, did we just skip something difficult?

Optimize

initialize params repeat many times: compute gradient params $+= \eta * gradient$

2. Compute gradient via backpropagation

Optimization problem:

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$h_j = \sigma\left(\theta_j^{(h)}^T \mathbf{x}\right) \text{ for } j = 1, ..., |\mathbf{h}| \qquad \hat{y} = \sigma\left(\theta^{(\hat{y})}^T \mathbf{h}\right)$$

Compute gradient

Take gradient with respect to all θ parameters

Optimize

initid Learn the tricks behind repea backpropagation in COM CS229, CS231N, CS224N, etc.

Beyond the basics

Shared weights?

It turns out if you want to force some of your weights to be shared over different neurons, the math isn't much harder.

Convolution is an example of such weight-sharing and is used a lot for vision (Convolutional Neural Networks, CNN).

Neural networks with multiple layers

Neurons learn features of the dataset

Neurons in later layers will respond strongly to high-level features of your training data.

If your training data is faces, you will get lots of face neurons.

If your training data is all of YouTube...

...you get a cat neuron.

Top stimuli in test set

Optimal stimulus found by numerical optimization

Multiple outputs?

Softmax is a generalization of the sigmoid function.

sigmoid(z): value in range [0, 1]

 $z \in \mathbb{R}$:

$$P(Y = 1 | X = x) = \sigma(z)$$

(equivalent: Bernoulli p)

$$z \in \mathbb{R}^k$$
:

$$P(Y = i | \mathbf{X} = \mathbf{x}) = \text{softmax}(\mathbf{z})_i$$
 (equivalent: Multinomial p_1, \dots, p_k)

Softmax test metric: Top-5 error

Y = y	P(Y=y X=x)	
5	0.14	
8	0.13	
7	0.12	
2	0.10	
9	0.10	
4	0.09	
1	0.09	
O	0.09	
6	0.08	
3	0.05	

Top-5 classification error

What % of datapoints did *not* have the correct class label in the top-5 predictions?

ImageNet classification

22,000 categories

14,000,000 images

Hand-engineered features (SIFT, HOG, LBP), Spatial pyramid, SparseCoding/Compression

smoothhound, smoothhound shark, Mustelus mustelus American smooth dogfish, Mustelus canis Florida smoothhound, Mustelus norrisi whitetip shark, reef whitetip shark, Triaenodon obseus Atlantic spiny dogfish, Squalus acanthias

Pacific spiny dogfish, Squalus suckleyi hammerhead, hammerhead shark smooth hammerhead, Sphyrna zygaena smalleye hammerhead, Sphyrna tudes shovelhead, bonnethead, bonnet shark, S

angel shark, angelfish, Squatina squatina, monkfish electric ray, crampfish, numbfish, torpedo smalltooth sawfish, Pristis pectinatus

guitarfish

roughtail stingray, Dasyatis centroura

butterfly ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari cownose ray, cow-nosed ray, Rhinoptera bonasus

manta manta ray devilfish

Atlantic manta, Manta birostris

devil ray, Mobula hypostoma grey skate, gray skate, Raja batis little skate, Raja erinacea

Stingray

ImageNet classification challenge

22,000 categories

1000 categories moothhound shark, Mustelus mustelus dogfish, Mustelus canis Florida smoothhound, Mustelus norrisi

14,000,000 images

1,200,000 images in train set odon obseus

200,000 images in test

Hand-engineered featurest (SIFT, HOG, LBP), Spatial pyramid, SparseCoding/Compression smooth hammerhead, Sphyrna zygaena smalleye hammerhead, Sphyrna tudes shovelhead, bonnethead, bonnet shark, Sphyrna tiburo angel shark, angelfish, Squatina squatina, monkfish electric ray, crampfish, numbfish, torpedo smalltooth sawfish, Pristis pectinatus guitarfish roughtail stingray, Dasyatis centroura butterfly ray eagle ray spotted eagle ray, spotted ray, Aetobatus narinari cownose ray, cow-nosed ray, Rhinoptera bonasus manta, manta ray, devilfish Atlantic manta, Manta birostris devil ray, Mobula hypostoma grey skate, gray skate, Raja batis little skate, Raja erinacea

ImageNet challenge: Top-5 classification error

(lower is better)

99.5%

Random guess

$$P(\text{true class label not in 5 guesses}) = \frac{\binom{999}{5}}{\binom{1000}{5}} = \frac{995}{1000}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

ImageNet challenge: Top-5 classification error

(lower is better)

99.5% 25.8% 5.1%

Random guess

Pre-Neural Networks

Humans (2014)

16.4%

GoogLeNet (2015)

Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. IJCV 2015 Szegedy et al., Going Deeper With Convolutions. CVPR 2015 Hu et al., Squeeze-and-Excitation Networks. Preprint arXiV 2017

ImageNet challenge: Top-5 classification error

(lower is better)

99.5% 25.8% 5.1%

Random guess

Pre-Neural Networks

Humans (2014)

16.4%

2.25%

GoogLe Net (2015)

SENet (2017)

Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. IJCV 2015 Szegedy et al., Going Deeper With Convolutions. CVPR 2015 Hu et al., Squeeze-and-Excitation Networks. Preprint arXiV 2017

GoogLeNet (2015)

1 Trillion Artificial Neurons (btw human brains have 1 billion neurons)

Multiple, Multi class output

22 layers deep!

Speeding up gradient descent

minimizes loss (a function of prediction error)

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
  gradient[j] = 0 for 0 \le j \le m
  for each training example (x,y):
     for each 0 \le j \le m:
        compute gradient
   \theta_i -= \eta * gradient[j] for all 0 \le j \le m 2. How can we speed up the update?
```

- 1. What if we have 1,200,000 images in our training set?

Our batch gradient descent (over the entire training set) will be slow + expensive.

- Use stochastic gradient descent (randomly select training examples with replacement).
- 2. Momentum update (Incorporate "acceleration" or "deceleration" of gradient updates so far)

Good ML = Generalization

Overfitting

Fitting the training data too well, such that we lose generality of model for predicting new data

perfect fit, but bad predictor for new data

more general fit + better predictor for new data

Dropout

During training, randomly leave out some neurons each training step.

It will make your network more robust.

(a) Standard Neural Net

(b) After applying dropout.

Making decisions?

Not everything is classification.

Deep Reinforcement Learning

Instead of having the output of a model be a probability, you make output an expectation.

Deep Reinforcement Learning

http://cs.stanford.edu/people/karpathy /convnetjs/demo/rldemo.html

