2 Linear Regression
6 Linear Regression: MSE
11 Linear Regression: MLE
18 Gradient Ascent
44 Extra: Derivations

# 24: Linear Regression and Gradient Ascent 

Jerry Cain<br>Match 6, 2024

Lecture Discussion on Ed

Linear
Regression

## Today's goals

We are going to learn linear regression.


- Informally known as "fitting data to a straight line"
- Linear models, admittedly, are often too simple for complex datasets betwer
- Many tasks in computer science call for classification, not regression $\begin{gathered}\text { 'Mpart } \\ \text { antputs. }\end{gathered}$

We still cover this topic so we can learn compelling techniques that will help us design and understand more complicated learning algorithms:

1. How to model likelihood of training data $\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$
2. What rules of calculus and argmax are important to remember
3. What gradient ascent is and why it is useful

## Regression: Predicting real numbers

Training data: $\left(\boldsymbol{x}^{(1)}, y^{(1)}\right),\left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots,\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)$


## Linear Regression

Assume linear model (and $\boldsymbol{X}$ is 1-D):

$$
\begin{aligned}
& \hat{Y}=g(X)=a X+a_{b} \\
& \left.=a x_{1}+b\right\} \text { mly m } \\
& x \text { impurt for } \\
& \text { this example }
\end{aligned}
$$

Training
Training data: $\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$
Learn parameters $\theta=(a, b)$

Two approaches:

- Analytical solution via mean squared error
- Iterative solution via MLE and gradient ascent


# Linear <br> Regression: <br> MSE 

## Mean Squared Error (MSE)



$$
\theta_{M S E}=\underset{\theta}{\arg \min } E\left[(Y-\hat{Y})^{2}\right]=\underset{\theta}{\arg \min } E\left[(Y-g(X))^{2}\right]
$$

could hare bien $E\left[|\hat{Y}-Y|{ }^{\theta}\right.$, but absolube value function mure difficuit to manipulate

- $Y$ and $\hat{Y}=g(X)$ are both random variables because of behavenor at 0 .
- Intuitively: Choose parameter $\theta$ that minimizes the expected squared deviation-what can be called an error-of your $\hat{Y}$ predictor from true $Y$

For linear regression, where $\hat{Y}=a X+b$ (so that $\theta=(a, b)$ ):

## Don't make me go nonlinear!

$$
\begin{aligned}
& \theta_{M S E}=\underset{\theta=(a, b)}{\arg \min } E\left[(Y-a X-b)^{2}\right] \\
& a_{M S E}=\underbrace{\rho(X, Y) \frac{\sigma_{Y}}{\sigma_{X}}, \quad b_{M S E}=\mu_{Y}-a_{M S E} \mu_{X} \begin{array}{r}
\text { mtethat } b_{\text {MSE }} \text { is } \\
\text { detined in terms } \\
\text { of } a_{\text {MSE }} \\
\text { we chore ond not } \\
\text { expard it, just }
\end{array}}_{\text {(derivation included at the end of slides) }}
\end{aligned}
$$

Can we compute these statistics for $X$ and $Y$ from our training data? ${ }^{\text {tosare }}$ space.
Training data: $\quad\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$

Technically no, but we can estimate them!

## Don't make me go nonlinear!

$$
\begin{gathered}
\theta_{M S E}=\underset{\theta=(a, b)}{\arg \min } E\left[(Y-a X-b)^{2}\right] \\
a_{M S E}=\rho(X, Y) \frac{\sigma_{Y}}{\sigma_{X}}, \quad b_{M S E}=\mu_{Y}-a_{M S E} \mu_{X}
\end{gathered}
$$

(derivation included at the end of slides)
Can we compute these statistics for $X$ and $Y$ from our training data?


## Summary: Linear Regression

Assume linear model (and $\boldsymbol{X}$ is 1-D):

$$
\stackrel{\widehat{Y}}{\hat{Y}}=g(\boldsymbol{X})=a X+b
$$

## Training

Training data: $\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$ Learn parameters $\theta=(a, b)$

If we want to minimize the mean squared error of our prediction,

$$
\hat{a}_{M S E}=\hat{\rho}(X, Y) \frac{S_{Y}}{S_{X}}, \quad \hat{b}_{M S E}=\bar{Y}-\hat{a}_{M S E} \bar{X}
$$

# Linear Regression: MLE 

## Linear Regression

Assume linear model (and $\boldsymbol{X}$ is 1-D, i.e., $\boldsymbol{X}=X$ ):

$$
\hat{Y}=g(\boldsymbol{X})=a X+b
$$

Training
Learn parameters $\theta=(a, b)$
Training data: $\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$

We've seen which parameters-that is, what choices of a and b -minimize mean squared error: $a_{M S E}$ and $b_{M S E}$, estimated by $\hat{a}_{M S E}$ and $\hat{b}_{M S E}$.

What if we want parameters that maximize the likelihood of the training data?

Note: Maximizing likelihood is typically an objective for classification models.

## Likelihood, it's been a minute

Consider a sample of $n$ iid random variables $X_{1}, X_{2}, \ldots, X_{n}$.

- $X_{i}$ was drawn from some distribution with density function $f\left(X_{i} \mid \theta\right)$.
- Observed sample: $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

Likelihood question:
How likely is the observed sample ( $X_{1}, X_{2}, \ldots, X_{n}$ ) given parameter $\theta$ ?
Likelihood function, $L(\theta)$ :

$$
L(\theta)=f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right) \begin{gathered}
\text { gmive seen thic } \\
\text { betove forle } \\
\text { and APP }
\end{gathered}
$$

This is just a product, since $X_{i}$ are iid

## Likelihood of the training data

Training data ( $n$ datapoints):
(shorthand)

- $\left(x^{(i)}, y^{(i)}\right)$ drawn iid from a distribution $f\left(X=x^{(i)}, Y=y^{(i)} \mid \theta\right)=f\left(x^{(i)}, y^{(i)} \mid \theta\right)$
- $\hat{Y}=g(X)$, where $g$ is a function on $(X)$ and parameter $\theta$

We can show that $\theta_{M L E}$ maximizes the log conditional likelihood function:


## Linear Regression, MLE

1. Assume linear model for $\hat{\gamma}$ (and $\boldsymbol{X}$ is 1-D):

$$
\begin{gathered}
\hat{Y}=g(\boldsymbol{X})=a X+b \\
\theta_{M L E}=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)
\end{gathered}
$$

2. Define maximum likelihood estimator:
3. Drama: We have a model for $\hat{Y}$, not $Y$

- Remember the MSE approach, where we minimize the squared error between $\hat{Y}$ and $Y$ ?
- Here we model this error directly!

$$
\begin{array}{rlrl}
Y & =\hat{Y}+Z & & \text { error/noise } \\
& =a X+b+Z & \text { (also random) }
\end{array}
$$

## Comparison: MSE vs MLE

$$
\hat{Y}=g(\boldsymbol{X})=a X+b
$$

Minimum Mean Squared Error

$$
\theta_{M S E}=\underset{\theta}{\arg \min } E\left[(Y-g(X))^{2}\right]
$$

- Don't directly model $Y$ (or any errors)
- Parameters are estimates of statistics from training data:

$$
\begin{aligned}
& \hat{a}_{M S E}=\hat{\rho}(X, Y) \frac{S_{Y}}{S_{X}} \\
& \hat{b}_{M S E}=\bar{Y}-\hat{a}_{M S E} \bar{X}
\end{aligned}
$$

Maximum Likelihood Estimation

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)
$$

- Directly model error between predicted $\hat{Y}$ and $Y$ as an RV $Z$

$$
Y=\hat{Y}+Z=a X+b+Z
$$

If we assume error $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then these two estimators are equivalent.

$$
\theta_{M S E}=\theta_{M L E}!
$$

## Linear Regression, MLE (next steps)

1. Assume linear model (and $\boldsymbol{X}$ is 1-D):

$$
\hat{Y}=g(\boldsymbol{X})=a X+b
$$

2. Define maximum likelihood estimator:

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)
$$

3. Model error, Z:
$Y=a X+b+Z$, where $\mathrm{Z} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
and alsomidel $Y$ interme
of $\hat{Y}$ and 2.
4. Pick $\theta=(a, b)$ that maximizes likelihood of training data

We won't find a solution analytically. Instead, we'll leverage gradient ascent, an iterative optimization algorithm.

# Gradient Ascent 

## Multiple ways to calculate argmax

$$
\begin{aligned}
& \text { Let } f(x)=-x^{2}+4 \\
& \text { where }-2<x<2
\end{aligned}
$$

What is arg max $f(x)$ ?
objective function
A. Graph and guess

B. Differentiate, set derivative to 0 , and solve

$$
\begin{aligned}
\frac{d f}{d x} & =-2 x=0 \\
x & =0
\end{aligned}
$$

C. Gradient ascent: educated guess \& iteratively update

## Gradient ascent

Walk uphill and you'll find a local maxima (if your step is small enough).



If your function is concave, Local maxima = global maxima

## Gradient ascent algorithm

Walk uphill and you'll find a local maxima (if your step is small enough).

Let $f(x)=-x^{2}+4$, where $-2<x<2$.

 Gradient at $x$ nucing
2. Gradient ascent algorithm:

$$
\begin{aligned}
& \text { initialize } x^{\substack{\text { Im+ } \\
\text { gram coss } \\
\text { grespabsibl }}} \\
& \text { repeat many times: } \\
& \text { compute gradient } \\
& x+=\frac{\eta}{\sqrt{n-2}} * \text { gradient }
\end{aligned}
$$

## Linear Regression, MLE (so far)

Assume linear model
(and $\boldsymbol{X}$ is 1-D):

$$
\hat{Y}=g(\boldsymbol{X})=a X+b
$$

Model $Y$ as $\hat{Y}+Z$ :
$Y=a X+b+Z$, where $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$

Pick $\theta=(a, b)$ that maximizes

$$
\theta_{\text {MLE }}=\underset{\theta}{\arg \max L L(\theta)}
$$

likelihood of training data

$$
=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(x^{(i)}, y^{(i)}, \mid \theta\right)
$$

( $\theta_{M L E}$ also maximizes log conditional likelihood)
$=\underset{\text { ard }}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)$

## Computing the MLE with gradient ascent

General approach for finding $\theta_{M L E}$, the MLE of $\theta$ :

1. Determine formula for $L L(\theta)$
log conditional likelihood
$\sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)$
2. Differentiate $L L(\theta)$ w.r.t. (each) $\theta$

$$
\begin{gathered}
\frac{\partial}{\partial \theta_{j}} \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right) \\
\theta_{1} \theta_{2} \\
\theta=\left(\begin{array}{c}
\downarrow \\
a_{1} \\
\downarrow
\end{array}\right)
\end{gathered}
$$

3. Solve resulting equations
(computer) Gradient Ascent

## 1. Determine formula for log conditional likelihood

| Model: | $\theta=(a, b)$ | Optimization |
| ---: | :--- | ---: |
|  | $Y=a X+b+Z$ | problem: |
|  | $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ |  |

Over the next few slides, we will show that our MLE linear regression $\theta_{M L E}$ reduces to

$$
\underset{\theta}{\arg \max }[-\underbrace{\left.\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right]}_{\substack{\text { Objective function }}}
$$

## 1. Determine formula for log conditional likelihood

| Model: | $\theta=(a, b)$ | Optimization | problem: |
| :--- | :--- | ---: | :--- |
|  | $Y=a X+b+Z$ | $\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)$ |  |
|  | $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ | goal | $\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right]$ |

1. What is the conditional distribution, $Y \mid X, \theta$ ?
2. Substitute 1. into objective fn.
3. Use argmax properties to simplify objective fn.

## 1. Determine formula for log conditional likelihood

$\begin{array}{rlr}\text { Model: } & \theta=(a, b) & \text { Optimization } \\ & Y=a X+b+Z & \text { problem: }\end{array} \underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)$
$Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
Y \mid X=x, \theta=(a, b)
$$

$$
\begin{array}{ll}
Y \mid X, \theta \sim \mathcal{N}\left(a X+b, \sigma^{2}\right) & Y=a X+b+Z \\
f\left(y^{(i)} \mid x^{(i)}, \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(y^{(i)}-\left(a x^{(i)}+b\right)\right)^{2} /\left(2 \sigma^{2}\right)}
\end{array}
$$

2. Substitute 1. into objective fn.

$$
\begin{aligned}
\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right) & =\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log \left[\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(y^{(i)}-a x^{(i)}-b\right)^{2} /\left(2 \sigma^{2}\right)}\right] \\
\text { using } & =\underset{\theta}{\arg \max }\left[\sum_{i=1}^{n}-\log \sqrt{2 \pi} \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right]
\end{aligned}
$$

## 1. Determine formula for log conditional likelihood

| Model: | $\theta=(a, b)$ | Optimization |
| ---: | :--- | ---: |
|  | $Y=a X+b+Z$ | problem: |$\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)$

3. Use argmax properties to simplify objective fn.

$$
\underset{\theta}{\arg \max }[\sum_{i=1}^{n} \underbrace{-\log \sqrt{2 \pi} \sigma}_{\begin{array}{c}
\text { dres.'t } \\
\text { depud } m
\end{array} \quad-(a, b)}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}]_{\text {(from previous slide) }}
$$

Argmax refresher \#1:
Invariant to additive constants

Argmax refresher \#2:
Invariant to positive constant scalars

$$
\begin{aligned}
& =\underset{\theta}{\arg \max }\left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] \\
& =\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right]
\end{aligned}
$$

## 1. Determine formula for $\log$ conditional likelihood

| Model: | $\theta=(a, b)$ | Optimization |
| ---: | :--- | ---: |
|  | $Y=a X+b+Z$ | problem: |
|  | $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ |  |

4. Celebrate!

$$
\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right]
$$

## Computing the MLE with gradient ascent

General approach for finding $\theta_{M L E}$, the MLE of $\theta$ :

1. Determine formula for $L L(\theta)$
log conditional likelihood
$\sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)$
$h(\theta)=-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}$
2. Differentiate $L L(\theta)$ w.r.t. (each) $\theta$
$\frac{\partial}{\partial \theta_{j}} \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)$

2-D gradient:

$$
\left(\frac{\partial h(\theta)}{\partial a}, \frac{\partial h(\theta)}{\partial b}\right)
$$

3. Solve resulting (simultaneous) equations
(computer) Gradient Ascent

## 2. Compute gradient

Model: $\quad \theta=(a, b)$
$Y=a X+b+Z$
$Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Optimization
problem: $\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right]$

1. What is the derivative of the objective function w.r.t. $a$ ?

Calculus refresher \#1:
Derivative(sum) = sum(derivative)

$$
\frac{\partial}{\partial a}\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right]=
$$

Calculus refresher
\#2:
Chain rule
2. What is the derivative of the objective function wrt $b$ ?

## 2. Compute gradient

Model: $\quad \theta=(a, b)$
$Y=a X+b+Z$
$Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Optimization
problem: $\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right]$

1. What is the derivative of the objective function w.r.t. $a$ ?

Calculus refresher \#1:
Derivative(sum) = sum(derivative)

$$
\begin{aligned}
\frac{\partial}{\partial a}\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] & =-\sum_{i=1}^{n} \frac{d}{d a}\left(y^{(i)}-a x^{(i)}-b\right)^{2} \quad \begin{array}{l}
\text { Calculus refresher } \\
\# 2:
\end{array} \\
& =-2 \sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)\left(-x^{(i)}\right) \text { Chain rule } \\
& =2 \sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right) x^{(i)}
\end{aligned}
$$

## 2. Compute gradient

Model: $\quad \theta=(a, b)$

$$
Y=a X+b+Z
$$

$$
Z \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

1. What is the derivative of the objective function wrt $a$ ?

$$
\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right)
$$

2. What is the derivative of the objective function wrt $b$ ?

$$
\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)
$$

analytical solution for $a_{M L E}, b_{M L E}$ : Set to 0 and solve simultaneous equations

Next up: We will reach the same solution computationally with gradient ascent.

## Computing the MLE with gradient ascent

General approach for finding $\theta_{M L E}$, the MLE of $\theta$ :

1. Determine formula for $L L(\theta)$
log conditional likelihood
$\sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)$
$h(\theta)=-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}$

$$
\begin{gathered}
\frac{\partial}{\partial \theta_{j}} \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right) \\
\frac{\partial h(\theta)}{\partial a}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right) \\
\frac{\partial h(\theta)}{\partial b}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)
\end{gathered}
$$

3. Solve resulting (simultaneous) equations
(computer)
Gradient Ascent

## 3. Gradient ascent with multiple parameters (if time)

$$
\begin{array}{crl}
\text { Optimization } \underset{\text { problem: }}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] & \text { Gradient: } \frac{\partial h(\theta)}{\partial a}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right) \\
=\underset{\theta}{\arg \max h(\theta)} & \frac{\partial h(\theta)}{\partial b}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)
\end{array}
$$

initialize $\theta$
repeat many times: compute gradient $\theta+=\eta *$ gradient

How does this work for multiple parameters?

## 3. Gradient ascent with multiple parameters

$$
\begin{aligned}
\text { Optimization } & \underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] & \text { Gradient: } \frac{\partial h(\theta)}{\partial a} & =\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right) \\
& =\underset{\theta}{\arg \max } h(\theta) & \frac{\partial h(\theta)}{\partial b} & =\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)
\end{aligned}
$$

How do we pseudocode the gradients we derived?
a += $\eta$ * gradient_a \# $\theta$ += $\eta$ * gradient
b += $\eta$ * gradient_b

## 3. Gradient ascent with multiple parameters

$$
\begin{array}{rlrl}
\text { Optimization } \underset{\text { problem: }}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] & \text { Gradient: } \frac{\partial h(\theta)}{\partial a} & =\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right) \\
& =\underset{\theta}{\arg \max } h(\theta) & \frac{\partial h(\theta)}{\partial b} & =\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)
\end{array}
$$

a, b = 0, $0 \quad$ \# initialize $\theta$
repeat many times:

```
gradient_a, gradient_b = 0, 0
for each training example (x, y):
        diff = y - (a * x + b)
        gradient_a += 2 * diff * x
        gradient_b += 2 * diff
    a += \eta * gradient_a # 0 += \eta * gradient
    b += \eta * gradient_b
```

Finish computing gradient before updating any part of $\theta$.
(demo)

## Global land-ocean temperature prediction

Training data: $\left(\boldsymbol{x}^{(1)}, y^{(1)}\right),\left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots,\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)$


## 3b. Interpret


a, b $=0,0 \quad \#$ initialize $\theta$
repeat many times:
aradient $a, ~ a r a d i e n t ~ b=0,0$
for each training example $(x, y)$ : diff $=y-(a * x+b)$
gradient_a += $2 * \operatorname{diff} * x$
gradient_b $+=2 * d i f f$
a += $\eta$ * gradient_a \# $\theta$ += $\eta$ * gradient
b += $\eta$ * gradient_b

Updates to $a$ and $b$ should include information from all $n$ training datapoints

## 3b. Interpret

Optimization $\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] \quad$ Gradient: $\frac{\partial h(\theta)}{\partial a}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right), ~(\theta)$

$$
=\underset{\theta}{\arg \max } h(\theta)
$$

$$
\frac{\partial h(\theta)}{\partial b}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)
$$

a, b = 0, 0 \# initialize $\theta$
repeat many times:
gradient_a, gradient_b $=0,0$ for each training example ( $x, y$ ): diff $=y-(a * x+b)$ gradient_a += $2 * \operatorname{diff} * x$ gradient_b += 2 * diff

How do we interpret the contribution of the i-th training datapoint?
a += $\eta$ * gradient_a \# $\theta$ += $\eta$ * gradient
b += $\eta$ * gradient_b

## 3b. Interpret

Optimization $\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] \quad$ Gradient: $\frac{\partial h(\theta)}{\partial a}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right), ~$

$$
=\underset{\theta}{\arg \max } h(\theta)
$$

$$
\frac{\partial h(\theta)}{\partial b}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)
$$

a, b = 0, 0 \# initialize $\theta$
repeat many times:

$$
\begin{aligned}
& \text { gradient_a, gradient_b }=0,0 \\
& \text { for each training example }(x, y): \\
& \text { diff }=y-(a * x+b) \\
& \text { gradient_a += } 2 * \text { diff } * x \\
& \text { gradient_b += } 2 * \text { diff } \\
& a+=\eta * \text { gradient_a } \# \theta+=\eta * \text { gradient } \\
& b+=\eta * \text { gradient_b }
\end{aligned}
$$

Prediction error!

$$
y^{(i)}-\hat{y}^{(i)}
$$

## 3b. Interpret

$\begin{array}{rlrl}\text { Optimization } \\ \text { problem: } & \underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] & \text { Gradient: } \frac{\partial h(\theta)}{\partial a}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right) \\ =\underset{\theta}{\arg \max h(\theta)} & \frac{\partial h(\theta)}{\partial b}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\end{array}$
a, b = 0, $0 \quad$ \# initialize $\theta$
repeat many times:

$$
\begin{aligned}
& \text { gradient_a, gradient_b }=0,0 \\
& \text { for each training example }(x, y): \\
& \text { prediction_error }=y-(a * x+b) \\
& \text { gradient_a += } 2 * \text { prediction_error } * x \\
& \text { gradient_b += } 2 * \text { prediction_error } \\
& a+=\eta * \text { gradient_a } \quad \# \theta+=\eta * \text { gradient } \\
& b+=\eta * \text { gradient_b }
\end{aligned}
$$

## 3b. Interpret

$\begin{array}{rlrl}\text { Optimization } \\ \text { problem: } & \underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] & \text { Gradient: } \frac{\partial h(\theta)}{\partial a} & =\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right) \\ & =\underset{\theta}{\arg \max } h(\theta) & \frac{\partial h(\theta)}{\partial b} & =\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\end{array}$
a, b = 0, $0 \quad$ \# initialize $\theta$
repeat many times:

```
gradient_a, gradient_b = 0, 0
for each training example (x, y):
        prediction_error = y - (a * x + b)
        gradient_a += 2 * prediction_error * x
        gradient_b += 2 * prediction_error
    a += \eta * gradient_a # 0 += \eta * gradient
    b += \eta * gradient_b
```

        \(\hat{Y}=a X+b\), so
        update to \(a\) should
        also scale by \(x^{(i)}\)
    
## 3b. Interpret

Optimization $\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y^{(i)}-a x^{(i)}-b\right)^{2}\right] \quad$ Gradient: $\frac{\partial h(\theta)}{\partial a}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)\left(x^{(i)}\right), ~$

$$
=\underset{\theta}{\arg \max } h(\theta)
$$

$$
\frac{\partial h(\theta)}{\partial b}=\sum_{i=1}^{n} 2\left(y^{(i)}-a x^{(i)}-b\right)
$$

a, b = 0, 0 \# initialize $\theta$
repeat many times:

$$
\begin{aligned}
& \text { gradient_a, gradient_b }=0,0 \\
& \text { for each training example }(x, y): \\
& \text { prediction_error }=y-(a * x+b) \\
& \text { gradient_a += } 2 * \text { prediction_error } * x \\
& \text { gradient_b += } 2 * \text { prediction_error } * 1 \\
& a+=\eta * \text { gradient_a } \# \theta+=\eta * \text { gradient } \\
& b+=\eta * \text { gradient_b }
\end{aligned}
$$

$$
\hat{Y}=a X+b, \text { so }
$$

update to $b$ just
scales by 1 , not $x^{(i)}$

Extra:
Derivations

## Don't make me get nonlinear!

$$
\theta_{M S E}=\underset{\theta=(a, b)}{\arg \min } E\left[(Y-a X-b)^{2}\right]
$$

1. Differentiate wrt (each) $\theta$, set to 0

$$
\begin{aligned}
\frac{\partial}{\partial a} E\left[(Y-a X-b)^{2}\right] & =E\left[\frac{\partial}{\partial a}(Y-a X-b)^{2}\right] \\
& =E[-2(Y-a X-b) X] \\
& =-2 E[X Y]+2 a E\left[X^{2}\right]+2 b E[X] \\
\frac{\partial}{\partial b} E\left[(Y-a X-b)^{2}\right] & =E[-2(Y-a X-b)] \\
& =-2 E[Y]+2 a E[X]+2 b
\end{aligned}
$$

2. Solve resulting simultaneous equations

$$
\begin{aligned}
a_{M S E}=\frac{E[X Y]-E[X] E[Y]}{E\left[X^{2}\right]-(E[X])^{2}}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)} & =\rho(X, Y) \frac{\sigma_{Y}}{\sigma_{X}} \\
b_{M S E}=E[Y]-a_{M S E} E[X] & =\mu_{Y}-\rho(X, Y) \frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}
\end{aligned}
$$

## Log conditional likelihood, a derivation

$\hat{Y}=g(X)$, where $g(\cdot)$ is a function with parameter $\theta$

Show that $\theta_{M L E}$ maximizes the log conditional likelihood function:

$$
\theta_{M L E}=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right)
$$

Proof: $\quad \theta_{M L E}=\underset{\theta}{\arg \max } \prod_{i=1}^{n} f\left(x^{(i)}, y^{(i)} \mid \theta\right) \quad=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(x^{(i)}, y^{(i)} \mid \theta\right) \quad \begin{aligned} & \left(\theta_{\text {MLE }} \text { also }\right. \\ & \text { maximizes } L L(\theta))\end{aligned}$

$$
\begin{array}{ll}
=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(x^{(i)} \mid \theta\right)+\sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right) & \begin{array}{l}
\text { (chain rule, } \\
\text { log of product }=\text { sum of logs) }
\end{array} \\
=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(x^{(i)}\right)+\sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right) & \left(x^{(i)} \text { indep. of } \theta\right) \\
=\underset{\theta}{\arg \max } \sum_{i=1}^{n} \log f\left(y^{(i)} \mid x^{(i)}, \theta\right) & \left(f\left(x^{(i)}\right) \text { constant w.r.t. } \theta\right)
\end{array}
$$

