## Table of Contents

2 Maximum a Posteriori
10 Bernoulli MAP: Clumsy Prior
14 Bernoulli MAP: Conjugate Prior
23 Choosing Hyperparameters
29 Extra: Other Conjugates


## 22: MAP

Jerry Cain<br>March 1, 2024

Lecture Discussion on Ed

# Maximum a Posteriori <br> Estimator 

## Maximum Likelihood Estimator

Consider a sample of $n$ iid random variables $X_{1}, X_{2}, \ldots, X_{n}$.
Maximum What parameter $\theta \quad L(\theta)=f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)$

Likelihood
Estimator
(MLE)
maximizes the likelihood of our observed data $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ ?

$$
L(\theta)=f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)
$$

$$
=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)
$$

$\theta_{\text {MLE }}=\underset{\theta}{\arg \max } \underset{\text { likelihood of data }}{f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)}$

Observations:

- MLE determines $\theta$ value that maximizes the probability of observing the sample.
- If we're estimating $\theta$, couldn't we just maximize the probability of $\theta$ ?


Today: Bayesian estimation using the Bayesian definition of probability!

## Maximum A Posteriori (MAP) Estimator

Consider a sample of $n$ iid random variables $X_{1}, X_{2}, \ldots, X_{n}$.

| Maximum Likelihood Estimator (MLE) | What parameter $\theta$ maximizes the likelihood of our observed data $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ ? | $L(\theta)=f\left(X_{n}, X_{2}, \ldots, X_{n} \mid \theta\right)$ |
| :---: | :---: | :---: |
|  |  | $=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)$ |
|  |  | $\theta_{M L E}=\arg \max f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)$ |
|  |  | likelihood of data |
| Maximum | Given the sample data | $\theta_{M A P}=\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)$ |
| a Posteriori | $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, |  |
| (MAP) | what is the most probable | posterior distribution |
| Estimator | parameter $\theta$ ? | of $\theta$ |

## Maximum A Posteriori (MAP) Estimator

Consider a sample of $n$ iid random variables $X_{1}, X_{2}, \ldots, X_{n}$. def The Maximum a Posteriori (MAP) Estimator of $\theta$ is the value of $\theta$ that maximizes the posterior distribution of $\theta$.

$$
\theta_{M A P}=\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)
$$

notice that both
Intuition with Bayes' Theorem:

the prin and the pristevior focus on $\theta$ as primary
vavibles

Before seeing data, prior belief of $\theta$

## Solving for $\theta_{M A P}$

- Observe data: $X_{1}, X_{2}, \ldots, X_{n}$, all iid
- Let likelihood be same as MLE: $f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)$
- Let the prior distribution of $\theta$ be $g(\theta)$. intentumalles

> gerenc at this spuint
$\theta_{M A P}=\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)=\underset{\theta}{\arg \max } \frac{f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right) g(\theta)}{h\left(X_{1}, X_{2}, \ldots, X_{n}\right)} \quad$ (Bayes' Theorem)
$=\underset{\theta}{\arg \max } \frac{g(\theta) \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)}{h\left(X_{1}, X_{2}, \ldots, X_{n}\right)}$
(independence)
$=\underset{\theta}{\arg \max } g(\theta) \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)$
$\left(1 / h\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right.$ is a positive constant w.r.t. $\left.\theta\right)$
$=\underset{\theta}{\arg \max }\left(\log g(\theta)+\sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)\right)$

## $\theta_{M A P}$ : Interpretation 1

- Observe data: $X_{1}, X_{2}, \ldots, X_{n}$, all iid
- Let likelihood be same as MLE: $f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)$
- Let the prior distribution of $\theta$ be $g(\theta)$.

$$
\begin{aligned}
& \theta_{M A P}=\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)=\underset{\theta}{\arg \max } \frac{f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right) g(\theta)}{h\left(X_{1}, X_{2}, \ldots, X_{n}\right)} \quad \text { (Bayes' Theorem) } \\
& =\underset{\theta}{\arg \max } \frac{g(\theta) \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)}{h\left(X_{1}, X_{2}, \ldots, X_{n}\right)} \\
& =\underset{\theta}{\arg \max } g(\theta) \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right) \\
& =\underset{\theta}{\arg \max }\left(\log g(\theta)+\sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)\right) \quad \begin{array}{l}
\theta_{M A P} \text { maximizes } \\
\log \text { prior }+ \text { log-likelihood }
\end{array}
\end{aligned}
$$

## $\theta_{M A P}$ : Interpretation 2

- Observe data: $X_{1}, X_{2}, \ldots, X_{n}$, all iid
- Let likelihood be same as MLE: $f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)$
- Let the prior distribution of $\theta$ be $g(\theta)$.

$$
\begin{aligned}
& =\arg \max \left(\log g(\theta)+\sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)\right) \quad \begin{array}{l}
\theta_{M A P} \text { maximizes } \\
\log \text { prior }+ \text { log-likelihood }
\end{array}
\end{aligned}
$$

## Mode: A statistic of a random variable

The mode of a random variable $X$ is defined as:

```
(X discrete, }\quad\operatorname{arg}\operatorname{max}p(x
    PMF p(x))
\operatorname{arg max f}\mp@subsup{|}{x}{f(x) }\begin{array}{l}{(X\mathrm{ continuous,}}\\{\operatorname{PDF}f(x))}\end{array},
```

- Intuitively: The value of $X$ that is "most likely".
- Note that some distributions may not have a unique mode (e.g., Uniform distribution, or Bernoulli(0.5))

$$
\theta_{M A P}=\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)
$$



## Bernoulli MAP: Choosing a prior

## How does MAP work? (for Bernoulli)

Observe data
Choose model

Choose prior on $\theta$

Find $\theta_{M A P}=$ $\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)$


- Differentiate, set to 0
- Solve


## MAP for Bernoulli

- Flip a coin 8 times. Observe $n=7$ heads and $m=1$ tail.
- Choose a prior on $\theta$. What is $\theta_{M A P}$ ? the actual probability

Suppose we pick a prior $\theta \sim \mathcal{N}\left(0.5,1^{2}\right) . g(\theta)=\frac{1}{\sqrt{2 \pi}} e^{-(p-0.5)^{2} / 2}$

1. Determine log $\log g(\theta)+\log f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)$
prior + log likelihood

$$
\begin{aligned}
& =\log \left(\frac{1}{\sqrt{2 \pi}} e^{-(p-0.5)^{2} / 2}\right)+\log \left(\binom{n+m}{n} p^{n}(1-p)^{m}\right) \\
= & -\log (\sqrt{2 \pi})-(p-0.5)^{2} / 2+\log \binom{n+m}{n}+n \log p+m \log (1-p)
\end{aligned}
$$

2. Differentiate wot (each) $\theta$, set to 0
3. Solve resulting equations

$$
-(p-0.5)+\frac{n}{p}-\frac{m}{1-p}=0
$$

We should choose a prior that's easier to deal with. This one is hard!
cubic equations, nope not going to do it reasmab can we justify a decision to

## A better approach: Use conjugate distributions

Observe data
Choose model

Choose prior on $\theta$
(some $g(\theta)$ )
$n$ heads, $m$ tails to us, chrose smothils that's easy to monipulate
Bernoulli $(p) \quad$ while still dirs a
good job of malling
(choose conjugate distribution)

Find $\theta_{M A P}=$ $\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)$

- Differentiate, set to 0
- Solve


## Bernoulli MAP: Conjugate prior

## Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update:

Add numbers of "successes" and "failures" seen to Beta parameters.

- You can set the prior to reflect how fair/biased you think the experiment is a priori.

$$
\begin{aligned}
\text { Prior } & \operatorname{Beta}\left(a=n_{i m a g}+1, b=m_{\text {imag }}+1\right) \\
\text { Experiment } & \text { Observe } n \text { successes and } m \text { failures } \\
\text { Posterior } & \operatorname{Beta}\left(a=n_{\text {imag }}+n+1, b=m_{\text {imag }}+m+1\right)
\end{aligned}
$$

Mode of $\operatorname{Beta}(a, b): \frac{a-1}{a+b-2}$

Beta parameters $a, b$ are called hyperparameters. Interpret Beta $(a, b): a+b-2$ trials, of which $a-1$ are successes
(we'll prove this in a few minutes)

## How does MAP work? (for Bernoulli)

Observe data
Choose model

Choose prior on $\theta$

Find $\theta_{M A P}=$ $\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)$
(some $g(\theta)$ )
maximize
log prior + log-likelihood
$\log g(\theta)+\sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)$
$n$ heads, $m$ tails
Bernoulli( $p$ )

(choose conjugate distribution)

(posterior is also conjugate)

- Differentiate, set to 0
- Solve


## Conjugate strategy: MAP for Bernoulli

- Flip a coin 8 times. Observe $n=7$ heads and $m=1$ tail.

- Choose a prior on $\theta$. What is $\theta_{M A P}$ ?

1. Choose a prior
2. Determine posterior
3. Compute MAP

Suppose we pick a prior $\theta \sim \operatorname{Beta}(a, b)$.
Because Beta is a conjugate distribution for Bernoulli, the posterior distribution is $\theta \mid D \sim \operatorname{Beta}(a+n, b+m)$

$$
\theta_{M A P}=\frac{a+n-1}{a+n+b+m-2} \quad(\text { mode of } \operatorname{Beta}(a+n, b+m))
$$

## MAP in practice

- Flip a coin 8 times. Observe $n=7$ heads and $m=1$ tail.
- What is the MAP estimator of the Bernoulli parameter $p$, if we assume a prior on $p$ of $\operatorname{Beta}(2,2)$ ?


## MAP in practice

- Flip a coin 8 times. Observe $n=7$ heads and $m=1$ tail.
- What is the MAP estimator of the Bernoulli parameter $p$, if we assume a prior on $p$ of $\operatorname{Beta}(2,2)$ ?

1. Choose a prior

$$
\begin{aligned}
& \quad \theta \sim \operatorname{Beta}(2,2) . \\
& \text { mole of pris } \operatorname{Beta}(2,2) \\
& \frac{2-1}{2+2-2}=\frac{1}{2}
\end{aligned}
$$



Before flipping the coin, we imagined 2 trials: 1 imaginary head, 1 imaginaty, taildy $2+7$ 3 is rally $2+1$
2. Determine posterior Posterior distribution of $\theta$ given observed data is Beta $(9,3)$
3. Compute MAP

$$
\begin{aligned}
& \theta_{M A P}=\frac{8}{10} \\
& \frac{1}{-2}=\frac{8}{10}
\end{aligned}
$$

## Proving the mode of Beta

## Observe data

## Choose model

Choose prior on $\theta$

Find $\theta_{M A P}=$
$\underset{\theta}{\arg \max } f\left(\theta \mid X_{1}, X_{2}, \ldots, X_{n}\right)$

These are equivalent interpretations of $\theta_{M A P}$. We'll use this equivalence to prove the mode of Beta.

## $n$ heads, $m$ tails


(some arbitrary $g(\theta)$ )
(choose conjugate)

- Differentiate, set to 0
- Solve
maximize
log prior + log-likelihood
$\log g(\theta)+\sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)$
$\operatorname{Beta}(a, b)$

Mode of posterior
distribution of $\theta$
(posterior is also conjugate)

## From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin 8 times. Observe $n=7$ heads and $m=1$ tail.
- Choose a prior on $\theta$. What is $\theta_{M A P}$ ?

Suppose we pick a prior $\theta \sim \operatorname{Beta}(a, b) . g(\theta=p)=\frac{1}{\beta} p^{a-1}(1-p)^{b-1} \quad \begin{aligned} & \text { normalizing } \\ & \text { constant, } \beta\end{aligned}$

1. Determine log prior + log likelihood
$\log g(\theta)+\log f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)=\log \left(\frac{1}{\beta} p^{a-1}(1-p)^{b-1}\right)+\log \left(\binom{n+m}{n} p^{n}(1-p)^{m}\right)$
$=\log \frac{1}{\beta}+(a-1) \log (p)+(b-1) \log (1-p)+\log \binom{n+m}{n}+n \log p+m \log (1-p)$
2. Differentiate $\quad \frac{a-1}{p}+\frac{n}{p}-\frac{b-1}{1-p}-\frac{m}{1-p}=0$
3. Solve
(next slide)

## From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin 8 times. Observe $n=7$ heads and $m=1$ tail.
- Choose a prior $\theta$. What is $\theta_{M A P}$ ?

Suppose we pick a prior $\theta \sim \operatorname{Beta}(a, b) . g(\theta)={ }_{\beta}^{1} p^{a-1}(1-p)^{b-1}$
normalizing constant, $\beta$
3. Solve for $p$

$$
\begin{aligned}
& \frac{a-1}{p}+\frac{n}{p}-\frac{b-1}{1-p}-\frac{m}{1-p}=0 \quad \text { (from previous slide) } \\
\Rightarrow & \frac{a+n-1}{p}-\frac{b+m-1}{1-p}=0 \\
\Rightarrow & (a+n-1)-(a+n-1) p=(b+m-1) p \\
\Rightarrow & p(a+n+b+m-2)=a+n-1
\end{aligned}
$$

$\theta_{M A P}=\frac{a+n-1}{a+n+b+m-2}$
The mode of the posterior, $\operatorname{Beta}(a+n, b+m)$ !

If we choose a conjugate prior, we avoid calculus with MAP, and we can simply report mode of posterior.

## Choosing <br> hyperparameters for conjugate prior

## Where'd you get them priors?

- Let $\theta$ be the probability a coin turns up heads.
- Model $\theta$ with 2 different priors:
- Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails mode: $\frac{2}{9}$
Prior 2: Beta(7,4): 6 imaginary heads, 3 imaginary tails mode: $\frac{6}{9}$


Now flip 100 coins and get 58 heads and 42 tails.

1. What are the two posterior distributions?
2. What are the modes of the two posterior distributions?

## Where'd you get them priors?

- Let $\theta$ be the probability a coin turns up heads.
- Model $\theta$ with 2 different priors:
- Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails mode: $\frac{2}{9}$
Prior 2: Beta(7,4): 6 imaginary heads, 3 imaginary tails mode: $\frac{6}{9}$


Now flip 100 coins and get 58 heads and 42 tails.


## Laplace smoothing

MAP with Laplace smoothing: a prior which represents $k$ imagined observations of each outcome.

- Categorical data (i.e., Multinomial, Bernoulli/Binomial)
- Also known as additive smoothing

Laplace estimate Imagine $k=1$ of each outcome (follows from Laplace's "law of succession")

Example: Laplace estimate for probabilities from previously mentioned experiment ( 100 coins: 58 heads, 42 tails)

$$
\text { heads } \frac{59}{102}=\frac{58+1}{10+2} \text { tails } \frac{43}{102}
$$

Laplace smoothing:

- Easy to implement/remember


## Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice $n=12$ times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall $\left.\theta_{M L E}: \quad p_{1}=3 / 12, p_{2}=2 / 12, p_{3}=0 / 12, \quad!\right\} \begin{gathered}\text { the zevo her is vuinms, } \\ \text { becauso it prevents } p_{3}\end{gathered}$
$p_{4}=3 / 12, p_{5}=1 / 12, p_{6}=3 / 12$
from becmirs anythirs
What are your Laplace estimates for each roll outcome?

## Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice $n=12$ times.
- Observe: $\quad 3$ ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall $\theta_{M L E}: \quad \begin{aligned} & p_{1}=3 / 12, p_{2}=2 / 12, p_{3}=0 / 12, \\ & p_{4}=3 / 12, p_{5}=1 / 12, p_{6}=3 / 12\end{aligned}$

What are your Laplace estimates for each roll outcome?

$$
\begin{array}{cl}
p_{i}=\frac{X_{i}+1}{n+m} & X_{3}=0 \Rightarrow \frac{0+1}{12+6} \\
p_{1}=4 / 18, p_{2}=3 / 18, p_{3}=1 / 18, \\
p_{4}=4 / 18, p_{5}=2 / 18, p_{6}=4 / 18 & \\
& \begin{array}{l}
\text { Laplace smoothing: } \\
\end{array} \\
\text { - Easy to implement/remember often } \\
& \text { Avoorts parameter estimation of } \mathbf{0}
\end{array}
$$

# Extra: Other Conjugates 

## Conjugate distributions

MAP
estimator:

## Multinomial is Multiple times the fun

Dirichlet $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is a conjugate for Multinomial.

- Generalizes Beta in the same way Multinomial generalizes Binomial:

$$
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\frac{1}{B\left(a_{1}, a_{2}, \ldots, a_{m}\right)} \prod_{i=1}^{m} x_{i}^{a_{i}-1}
$$

Prior
Dirichlet $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$
Saw ( $\sum_{i=1}^{m} a_{i}$ ) -m imaginary trials, with $a_{i}-1$ of outcome $i$
Experiment Observe $n_{1}+n_{2}+\cdots+n_{m}$ new trials, with $n_{i}$ of outcome $i$
Posterior $\operatorname{Dirichlet}\left(a_{1}+n_{1}, a_{2}+n_{2}, \ldots, a_{m}+n_{m}\right)$
MAP:

$$
p_{i}=\frac{a_{i}+n_{i}-1}{\left(\sum_{i=1}^{m} a_{i}\right)+\left(\sum_{i=1}^{m} n_{i}\right)-m}
$$

## Good times with Gamma

$\operatorname{Gamma}(\alpha, \beta)$ is a conjugate for Poisson.

- Also conjugate for Exponential, $\alpha$ : connte cerents but we won't delve into that
- Mode of gamma: $(\alpha-1) / \beta$
$B=\begin{aligned} & \text { tracksthe } \\ & \text { time that's } \\ & \text { pacsed }\end{aligned}$
$\theta \sim \operatorname{Gamma}(\alpha, \beta)=\frac{\beta^{\alpha} \chi^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$
Saw $\alpha-1$ total imaginary events during $\beta$ prior time periods
Experiment Observe $n$ events during next $k$ time periods
Posterior $\quad(\theta \mid n$ events in $k$ periods $) \sim \operatorname{Gamma}(\alpha+n, \beta+k)$

MAP:

$$
\begin{aligned}
& \text { the new } \alpha
\end{aligned}
$$

## MAP for Poisson

Let $\lambda$ be the average \# of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \operatorname{Gamma}(11,5)$ ?
```
Observe 10 imaginary events
in 5 time periods,
i.e., observe at Poisson rate = 2
```

Now perform the experiment and see 11 events in next 2 time periods.
2. Given your prior, what is the posterior distribution?
3. What is $\theta_{M A P}$ ?

## MAP for Poisson

Let $\lambda$ be the average \# of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \operatorname{Gamma}(11,5)$ ?

Observe 10 imaginary events in 5 time periods,
i.e., observe at Poisson rate $=2$

Now perform the experiment and see 11 events in next 2 time periods.
2. Given your prior, what is the posterior distribution?
( $\theta \mid n$ events in $k$ periods) $\sim \operatorname{Gamma}(22,7)$
3. What is $\theta_{M A P}$ ?

$$
\theta_{M A P}=3, \text { the updated Poisson rate }
$$

