2 MLE: Multinomial
9 Bayesian Statistics
23 Flipping Coins, Revisited
31 Conjugate Distributions
47 Extra: MLE Derivation

21: Bayesian Statistics and Beta

Jerry Cain

February 28, 2024

Lecture Discussion on Ed

MLE: Multinomial

Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

- Each element is drawn from one of m outcomes. P (outcome i) $=p_{i}$, where $\sum_{i=1}^{m} p_{i}=1$
- $X_{i}=\#$ of trials with outcome i, where $\sum_{i=1}^{m} X_{i}=n$)
this is the dassic description
of a Multinmial distribution

Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

- Each element is drawn from one of m outcomes.

$$
P(\text { outcome } i)=p_{i}, \text { where } \sum_{i=1}^{m} p_{i}=1
$$

- $X_{i}=\#$ of trials with outcome i, where $\sum_{i=1}^{m} X_{i}=n$

Example: Suppose each RV is outcome of 6-sided die.

- Roll the dice $n=12$ times.
- Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

$$
\begin{aligned}
& X_{1}=3, X_{2}=2, X_{3}=0, \\
& X_{4}=3, X_{5}=1, X_{6}=3
\end{aligned} \quad \text { check: } X_{1}+X_{2}+\cdots+X_{6}=12
$$

Okay, just one more MLE with the Multinomial

Consider a sample of n id random variables where:

- Each element is drawn from one of m outcomes. $P\left(\right.$ outcome i) $=p_{i}$, where $\sum_{i=1}^{m} p_{i}=1$
- $X_{i}=\#$ of trials with outcome i, where $\sum_{i=1}^{m} X_{i}=n$

1. What is the likelihood of observing the sample $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, given the probabilities $p_{1}, p_{2}, \ldots, p_{m}$?

if $p_{1}, i p_{2}, p_{3}$, etc are unknmm, then they are the parameters. In any MLE pablum, we try tochoose
B. $p_{1}^{X_{1}} p_{2}^{X_{2}} \cdots p_{m}^{X_{m}}$
C. $\frac{n!}{X_{1}!X_{2}!\cdots X_{m}!} X_{1}^{p_{1}} X_{2}^{p_{2}} \cdots X_{m}^{p_{m}}$

Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

- Each element is drawn from one of m outcomes. $P\left(\right.$ outcome i) $=p_{i}$, where $\sum_{i=1}^{m} p_{i}=1$
- $X_{i}=\#$ of trials with outcome i, where $\sum_{i=1}^{m} X_{i}=n$

$$
\begin{aligned}
& \text { here, } \theta=\left(p_{1}, p_{2}, p_{3}, \ldots, p_{m}\right) \\
& \stackrel{\downarrow}{L(\theta)}=\frac{n!}{X_{1}!X_{2}!\cdots X_{m}!} p_{1}^{X_{1}} p_{2}^{X_{2}} \cdots p_{m}^{X_{m}} \\
& \text { recall that }
\end{aligned}
$$

1. What is the likelihood of observing the sample $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, given the probabilities $p_{1}, p_{2}, \ldots, p_{m}$?
2. What is $\theta_{M L E}$?
$L L(\theta)=\log (n!)-\sum_{i=1}^{m} \log \left(X_{i}!\right)+\sum_{i}^{m} X_{i} \log \left(p_{i}\right)$, such that $\sum_{i=1}^{m} p_{i}=1$

Optimize with
Lagrange multipliers in extra slides

$$
\longrightarrow \theta_{M L E}: p_{i}=\frac{X_{i}}{n} \quad \begin{aligned}
& \text { Intuitively, probability } \\
& p_{i}=\text { proportion of outcomes }
\end{aligned}
$$

When MLEs attack!

Consider a 6-sided die.

- Roll the dice $n=12$ times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

What is $\theta_{M L E}$?

When MLEs attack!

$$
\begin{aligned}
\text { MLE for } \\
\text { Multinomial: }
\end{aligned} p_{i}=\frac{X_{i}}{n}
$$

Consider a 6-sided die.

- Roll the dice $n=12$ times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
$\theta_{M L E}:$

$$
\begin{aligned}
& p_{1}=3 / 12 \quad \text { - MLE say you just never roll threes. } \\
& p_{2}=2 / 12 \\
& p_{3}=0 / 12 \quad \text { ! } \\
& p_{4}=3 / 12 \\
& p_{5}=1 / 12 \\
& p_{6}=3 / 12 \\
& \text { - Do you really believe that? } \\
& \text { But what if you cannot } \\
& \text { observe anymore rolls? }
\end{aligned}
$$

Bayesian Statistics

Starting Today!

Today we are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.

A new definition of probability

Flip a coin $n+m$ times, produce n heads. We don't know the probability θ that the coin comes up heads.

The world's first coin

Frequentist

θ is a single value.

$$
\theta=\lim _{n+m \rightarrow \infty} \frac{n}{n+m} \approx \frac{n}{n+m}
$$

Bayesian
θ is a random variable.
θ 's continuous support: $(0,1)$

Let's play a game

Roll 2 dice. If neither roll is a 6 , you win (event W). Else, I win (event W^{C}).

- Before you play, what's the probability that you win?
- Play once. What's the probability that you win?
- Play three more times. What's the probability that you win?

Frequentist

Bayesian statistics: Constantly update your prior beliefs.

Bayesian probability

Bayesian statistics: Probability represents our everevolving understanding of the world.

Mixing discrete and continuous random variables, combined with Bayes' Theorem, allows us to reason about probabilities as random variables.

Mixing discrete and continuous

Let X be a continuous random variable, and N be a discrete random variable.

Bayes'
Theorem:

$$
f_{X \mid N}(x \mid n)=\frac{p_{N \mid X}(n \mid x) f_{X}(x)}{p_{N}(n)}
$$

Intuition: $\quad P(X=x \mid N=n)=\frac{P(N=n \mid X=x) \overparen{P(X=x})}{P(N=n)}$
$\approx f_{x}(x) \epsilon_{x}$

$$
f_{X \mid N}(x \mid n) \varepsilon_{X}=\frac{P(N=n \mid X=x) f_{X}(x) \varepsilon_{X X}}{P(N=n)} \Rightarrow f_{X \mid N}(x \mid n)=\frac{p_{N \mid X}(n \mid x) f_{X}(x)}{p_{N}(n)}
$$

Bayes' Theorem: All Flavors

Let X, Y be continuousand M, N be discrete random variables.

Original Bayes:

$$
\left.p_{M \mid N}(m \mid n)=\frac{p_{N \mid M}(n \mid m) p_{M}(m)}{p_{N}(n)}\right\} \begin{gathered}
\text { this is our origival } \\
\text { Bages' theorem from } \\
\text { Lecture } 4
\end{gathered}
$$

$$
\begin{aligned}
& \left.f_{X \mid N}(x \mid n)=\frac{p_{N \mid X}(n \mid x) f_{X}(x)}{p_{N}(n)}\right\} \text { from prior slide } \\
& \left.p_{N \mid X}(n \mid x)=\frac{f_{X \mid N}(x \mid n) p_{N}(n)}{f_{X}(x)}\right\} \begin{array}{c}
\text { arathor mixed form } \\
\text { not unlike the } \\
\text { one above it. }
\end{array}
\end{aligned}
$$

$$
\left.f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}\right\} \begin{aligned}
& \text { Jacoband Kann tanght } \\
& \text { this form when they } \\
& \text { guest lectund for } \\
& \text { Lecture 17. }
\end{aligned}
$$

Mix Bayes \#1:

Mix Bayes \#2:

All continuous:

Mixing discrete and continuous

Let θ be a random variable for the probability your coin comes up heads, and N be the number of heads you observe in an experiment.

$$
\begin{aligned}
& \text { posterior } \\
& f_{\theta \mid N}(x \mid n)=\frac{p_{N \mid \theta}(n \mid x) f_{\theta}(x)}{p_{N}(n)}
\end{aligned}
$$

normalization constant

- Prior belief of parameter θ
- Likelihood of $N=n$ heads, given parameter $\theta=x$.
- Posterior updated belief of parameter θ.

$$
\begin{aligned}
& f_{\theta}(x) \\
& p_{N \mid \theta}(n \mid x) \\
& f_{\theta \mid N}(x \mid n)
\end{aligned}
$$

Beta RV

Beta random variable

def A Beta random variable X is defined as follows:

$$
\begin{aligned}
& X \sim \operatorname{Beta}(a, b) \\
& a>0, b>0 \\
& \text { Support of } X \text { : }(0,1) \\
& \text { where } B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x \text {, normalizing constant }
\end{aligned}
$$

Expectation $E[X]=\frac{a}{a+b} \quad$ Variance $\operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+1)}$ $B(a, b)$ is chosen si that $\int_{0}^{1} f(x) d x=1$

$$
\frac{1}{B(a, b)} \int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=1 \Rightarrow B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x
$$

Beta RV with different a, b

$X \sim \operatorname{Beta}(a, b) \quad$ PDF $\quad f(x)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}$

$$
a>0, b>0
$$

Support of $X:(0,1)$
where $B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x$, normalizing constant

 + a third case (next slide)

Note: PDF symmetric when $a=b$

Beta RV with different a, b

$$
X \sim \operatorname{Beta}(a, b)
$$

Match PDF to distribution:

a, b positive
integers
geaterthar $\{\{$
A. Beta $(5,5)$

3.0
B. Beta (2,8)

In CS109, we focus on Beta functions where a, b are both positive integers.

Beta random variable

def A Beta random variable X is defined as follows:

Beta can be a distribution of probabilities.

Beta can be a distribution of probabilities.

Beta parameters a, b are determined by the outcome of an experiment.

But which experiment?

Flipping a coin with unknown probability

Flip a coin with unknown probability

Flip a coin $n+m$ times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) is equally like to be any probability in (0,1).
- Let $N=$ number of heads.
- Given $\theta=x$, coin flips are independent.

What is our updated belief of θ after we observe $N=n$?

What are reasonable distributions of the following?

1. θ
2. $N \mid \theta=x \quad$ Likelihood $N \mid \theta=x \sim \operatorname{Bin}(n+m, x)$
3. $\theta \mid N=n \quad$ Bayesian posterior. Use Bayes'!

Flip a coin with unknown probability

Flip a coin $n+m$ times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) is equally like to be any probability in (0,1).
- Let $N=$ number of heads.
- Given $\theta=x$, coin flips are independent.

What is our updated belief of θ after we observe $N=n ? \quad$ Posterior: $f_{\theta \mid N}(\theta \mid n)$

$$
\begin{aligned}
f_{\theta \mid N}(x \mid n)= & \frac{p_{N \mid \theta}(n \mid x) f_{\theta}(x)}{p_{N}(n)}=\frac{\binom{n+m}{n} x^{n}(1-x)^{m} \cdot 1}{p_{N}(n)} \\
& =\frac{\binom{n+m}{n}}{p_{N}(n)} x^{n}(1-x)^{m}=\frac{1}{c} x^{n}(1-x)^{m}, \text { where } c=\int_{0}^{1} x^{n}(1-x)^{m} d x
\end{aligned}
$$

constant with respect to x,

Let's try it out

1. Start with a $\theta \sim \operatorname{Uni}(0,1)$ over probability that a coin lands heads.
2. Flip a coin 8 times. Observe $n=7$ heads and $m=1$ tail
3. What is our posterior belief of the probability θ ?

Beta RV with different a, b

$$
\begin{gathered}
X \sim \operatorname{Beta}(a, b) \quad \text { PDF } \quad f(x)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} \\
\begin{array}{c}
a>0, b>0 \\
\text { Support of } X:(0,1)
\end{array} \quad \text { where } B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x, \text { normalizing constant }
\end{gathered}
$$

$$
\begin{gathered}
f_{\theta \mid N}(x \mid n)=\frac{1}{c} x^{7}(1-x)^{1} \quad \text { is the PDF for } \operatorname{Beta}(8,2)! \\
c \text { normalizes to valid PDF }
\end{gathered}
$$

Let's try it out

1. Start with a $\theta \sim \operatorname{Uni}(0,1)$ over probability that a coin lands heads.
2. Flip a coin 8 times. Observe $n=7$ heads and $m=1$ tail
3. What is our posterior belief of the probability θ ?

$$
f_{\theta \mid N}(x \mid n)=\frac{1}{c} x^{7}(1-x)^{1}
$$

c normalizes to valid PDF

3. What is our posterior belief of the probability θ ?

- Start with a $\theta \sim$ Uni $(0,1)$ over probability
- Observe $n=7$ successes and $m=1$ failures
- Your new belief about the probability of θ is:

$$
f_{\theta \mid N}(x \mid n)=\frac{1}{c} x^{7}(1-x)^{1}, \text { where } c=\int_{0}^{1} x^{7}(1-x)^{1} d x
$$

Posterior belief, $\theta \mid N$:

$$
\operatorname{Beta}(a=8, b=2)
$$

$$
f_{\theta \mid N}(x \mid n)=\frac{1}{c} x^{8-1}(1-x)^{2-1}
$$

$$
\operatorname{Beta}(a=n+1, b=m+1)
$$

CSiog focus: Beta where a, b both positive integers $\quad x \sim \operatorname{Beta}(a, b)$

summary
MLE:
Bayesian
view point:
θ is a value aka print estivate
θ is a vardum vaviabl.
Θ expueses
Beta:

$$
\begin{gathered}
a=\text { "successes" }+1 \\
b=\text { "failures" }+1
\end{gathered}
$$

Beta parameters a, b are determined by the outcome of an experiment.

- Beta (in CS109) models the randomness of the probability of experiment success.
- Beta parameters depend on our data and our prior.

Conjugate distributions

A note about our prior

1. Start with a $\theta \sim \operatorname{Uni}(0,1)$ over probability that a coin lands heads.
 heads and $m=1$ tail
$f_{\theta \mid N}(x \mid n)=\frac{1}{c} x^{7}(1-x)^{1}$ c normalizes to valid PDF

Beta RV with different a, b

$$
\begin{gathered}
X \sim \operatorname{Beta}(a, b) \quad \text { PDF } \quad f(x)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} \\
\quad \begin{array}{l}
a>0, b>0 \\
\text { Support of } X:(0,1)
\end{array} \quad \text { where } B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x, \text { normalizing constant }
\end{gathered}
$$

Note: PDF symmetric when $a=b$

A note about our prior

1. Start with a $\theta \sim \operatorname{Uni}(0,1)$ over probability that a coin lands heads. Beta(1,1)

Check this out. $\operatorname{Beta}(a=1, b=1)$:

$$
\begin{aligned}
& f(x)= \frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} \\
&=\frac{1}{\int_{0}^{1} 1 d x} \\
&=1 \quad \begin{array}{l}
\text { where } 0<x<1
\end{array} \\
&\left.\begin{array}{c}
\text { comfirms that } \\
\text { Beta }(1,1) \text { came os Uni } \\
\text { Stanford University } \\
34
\end{array}\right)
\end{aligned}
$$

Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:

- Prior and posterior parametric forms are the same

Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:

1. If our prior belief of the parameter is Beta, and
2. Our experiment is Bernoulli, then
(observe n successes, m failures)
3. Our posterior is also Beta.

Proof: $\quad \theta \sim \operatorname{Beta}(a, b) \quad N \mid \theta \sim \operatorname{Bin}(n+m, x)$

$$
\begin{aligned}
f_{\theta \mid N}(x \mid n) & =\frac{p_{N \mid \theta}(n \mid x) f_{\theta}(x)}{p_{N}(n)}=\frac{\binom{n+m}{m} x^{n}(1-x)^{m} \cdot \frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}}{p_{N}(n)} \\
\begin{array}{c}
\text { constants that } \\
\text { don't depend on } x
\end{array} & =C \cdot x^{n}(1-x)^{m} \cdot x^{a-1}(1-x)^{b-1} \\
& =C \cdot x^{n+a-1}(1-x)^{m+b-1} \square \Rightarrow \begin{array}{r}
\text { Beta }(a, b) \text { be came } \\
\text { Beta }(a+n, b+m) \\
\text { Stanford University }
\end{array}
\end{aligned}
$$

Beta is a conjugate distribution for Bernoulli

This is the main takeaway of Beta.
Beta is a conjugate distribution for Bernoulli, meaning:

- Prior and posterior parametric forms are the same \rightarrow both ave Beta
- Practically, conjugate means easy update:

Add number of "heads" and "tails" seen to Beta parameters.
You can invent a prior to express how biased you believe the coin is a priori:

- $\theta \sim \operatorname{Beta}(a, b)$: pretend you've conducted $(a+b-2)$ imaginary trials, where ($a-1$) trials produced a head and $(b-1)$ produced a
- Choosing Beta $(1,1)=$ Uni $(0,1)$ means you don't hold any prior beliefs

$$
\text { Prior } \operatorname{Beta}\left(a=n_{i m a g}+1, b=m_{\text {imag }}+1\right)
$$

Experiment Observe n successes and m failures \leftarrow inheuntly | Binmial/Bermmilli |
| :---: |

Posterior $\operatorname{Beta}\left(a=n_{\text {imag }}+n+1, b=m_{\text {imag }}+m+1\right)$

Medicinal Beta

- Before being tested, a medicine is believed to "work" 80\% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let p be the probability your drug works.

$$
p \approx \frac{14}{20}=0.7
$$

POV: prior beliefs ivrelerant in prior/expert belief about probability.

Medicinal Beta

- Before being tested, a medicine is believed to "work" 80\% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let p be the probability your drug works.

$$
p \approx \frac{14}{20}=0.7
$$

Bayesian

Let θ be the probability your drug works.
θ is a random variable.
POV: history matters and shonidn't
be ignored.

Medicinal Beta

$$
\begin{aligned}
\text { Prior } & \operatorname{Beta}\left(a=n_{i m a g}+1, b=m_{\text {imag }}+1\right) \\
\text { Posterior } & \operatorname{Beta}\left(a=n_{i m a g}+n+1, b=m_{\text {imag }}+m+1\right)
\end{aligned}
$$

- Before being tested, a medicine is believed to "work" 80\% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?
What is the prior distribution of θ ? (select all that apply)
A. $\quad \theta \sim \operatorname{Beta}(1,1)=\operatorname{Uni}(0,1)$
B. $\theta \sim \operatorname{Beta}(81,101)$
C. $\theta \sim \operatorname{Beta}(80,20)$
D. $\theta \sim \operatorname{Beta}(81,21)$
E. $\quad \theta \sim \operatorname{Beta}(5,2)$

Medicinal Beta

$$
\begin{aligned}
\text { Prior } & \operatorname{Beta}\left(a=n_{\text {imag }}+1, b=m_{\text {imag }}+1\right) \\
\text { Posterior } \operatorname{Beta}(a & \left.=n_{\text {imag }}+n+1, b=m_{\text {imag }}+m+1\right)
\end{aligned}
$$

- Before being tested, a medicine is believed to "work" 80\% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?
(Bayesian interpretation)
What is the prior distribution of θ ? (select all that apply)
A. $\quad \theta \sim \operatorname{Beta}(1,1)=\operatorname{Uni}(0,1)$
B. $\theta \sim \operatorname{Beta}(81,101)$
C. $\theta \sim \operatorname{Beta}(80,20)$
(D) $\theta \sim \operatorname{Beta}(81,21) \rightarrow$ Interpretation: 80 successes / 100 imaginary trials
(E.) $\theta \sim \operatorname{Beta}(5,2) \longrightarrow 4$ successes $/ 5$ imaginan trials (you can choose either based on how strongly you believe in prior data. We choose E on next slide)

Medicinal Beta

$$
\begin{aligned}
\text { Prior } & \operatorname{Beta}\left(a=n_{i m a g}+1, b=m_{\text {imag }}+1\right) \\
\text { Posterior } \operatorname{Beta}(a & \left.=n_{\text {imag }}+n+1, b=m_{\text {imag }}+m+1\right)
\end{aligned}
$$

- Before being tested, a medicine is believed to "work" 80\% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?
(Bayesian interpretation)
Prior

$$
\begin{array}{ll}
\text { Prior: } & \\
\text { Posterior: } & \\
& \\
& \\
& \sim \operatorname{Beta}(a=5, b=2) \\
& \sim \operatorname{Beta}(a=5+14, b=2+6) \\
\end{array}
$$

Medicinal Beta

$$
\begin{aligned}
\text { Prior } & \operatorname{Beta}\left(a=n_{i m a g}+1, b=m_{\text {imag }}+1\right) \\
\text { Posterior } \operatorname{Beta}(a & \left.=n_{\text {imag }}+n+1, b=m_{\text {imag }}+m+1\right)
\end{aligned}
$$

- Before being tested, a medicine is believed to "work" 80\% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?
Prior: $\quad \theta \sim \operatorname{Beta}(a=5, b=2)$
Posterior: $\quad \theta \sim \operatorname{Beta}(a=5+14, b=2+6)$

$$
\sim \operatorname{Beta}(a=19, b=8)
$$

What do you report to pharmacists?
A. Expectation of posterior
B. Mode of posterior
C. Distribution of posterior
D. Nothing
(Bayesian interpretation)

Medicinal Beta

$$
\begin{aligned}
\text { Prior } & \operatorname{Beta}\left(a=n_{i m a g}+1, b=m_{\text {imag }}+1\right) \\
\text { Posterior } & \operatorname{Beta}\left(a=n_{i m a g}+n+1, b=m_{\text {imag }}+m+1\right)
\end{aligned}
$$

- Before being tested, a medicine is believed to "work" 80\% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?
Prior: $\quad \theta \sim \operatorname{Beta}(a=5, b=2)$
Posterior: $\quad \theta \sim \operatorname{Beta}(a=5+14, b=2+6)$

$$
\sim \operatorname{Beta}(a=19, b=8)
$$

What do you report to pharmacists?

$$
\begin{aligned}
& E[\theta]=\frac{a}{a+b}=\frac{19}{19+8} \approx 0.70 \\
& \underbrace{\operatorname{mode}(\theta)=\frac{a-1}{a+b-2}}=\frac{18}{18+7} \approx 0.72
\end{aligned}
$$ "most likely" parameter given the data.

we will prove later on

Food for thought

In this lecture:
$X \sim \operatorname{Ber}(p)$

If nothing is known about the parameter p, Bayesian statisticians will:

- Treat the parameter as a random variable θ with a Beta prior distribution
- Conduct experiments
- Based on the outcomes of those experiments, update the posterior distribution of θ

Food for thought:
Any parameter for a "parameterized" random variable can be thought of as a random variable.

$$
Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Estimating our parameter directly

(our focus so far)

Maximum
Likelihood
Estimator
(MLE)

What is the parameter θ that maximizes the likelihood of our observed data $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

$$
\begin{gathered}
L(\theta)=f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right) \\
=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right) \\
\theta_{M L E}=\underset{\theta}{\arg \max } f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right) \\
\text { likelihood of data }
\end{gathered}
$$

Observations:

- MLE maximizes probability of observing data given a parameter θ. It's fitting the curve to match the data.
- If we are estimating θ, shouldn't we maximize the probability of θ directly? SAT word: adumbrate

Extra: MLE: Multinomial derivation

Okay, just one more MLE with the Multinomial

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. P (outcome i) $=p_{i}$, where $\sum_{i=1}^{m} p_{i}=1$
- $X_{i}=\#$ of trials with outcome i, where $\sum_{i=1}^{m} X_{i}=n$

1. What is the likelihood of observing the sample $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, given the probabilities $p_{1}, p_{2}, \ldots, p_{m}$?

$$
L(\theta)=\frac{n!}{X_{1}!X_{2}!\cdots X_{m}!} p_{1}^{X_{1}} p_{2}^{X_{2}} \cdots p_{m}^{X_{m}}
$$

2. What is $\theta_{M L E}$?
$L L(\theta)=\log (n!)-\sum_{i=1}^{m} \log \left(X_{i}!\right)+\sum_{i=1}^{m} X_{i} \log \left(p_{i}\right)$, such that $\sum_{i=1}^{m} p_{i}=1$

$$
\theta_{M L E}: p_{i}=\frac{X_{i}}{n} \quad \begin{aligned}
& \text { Intuitively, probability } \\
& p_{i}=\text { proportion of outcomes }
\end{aligned}
$$

Optimizing MLE for Multinomial

$\theta=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$
$\theta_{M L E}=\underset{\theta}{\arg \max } L L(\theta)$, where $\sum_{i=1}^{m} p_{i}=1$

Use Lagrange multipliers to account for constraint

Lagrange multipliers:

$$
A(\theta)=L L(\theta)+\lambda\left(\sum_{i=1}^{m} p_{i}-1\right)=\sum_{i=1}^{m} X_{i} \log \left(p_{i}\right)+\lambda\left(\sum_{i=1}^{m} p_{i}-1\right) \begin{aligned}
& \left(\begin{array}{l}
\text { drop } \\
\text { non- } p_{i} \\
\text { terms })
\end{array}\right.
\end{aligned}
$$

Differentiate w.r.t.
each p_{i}, in turn:

$$
\frac{\partial A(\theta)}{\partial p_{i}}=X_{i} \frac{1}{p_{i}}+\lambda=0 \Rightarrow p_{i}=-\frac{X_{i}}{\lambda}
$$

Solve for λ, noting
$\sum_{i=1}^{m} X_{i}=n, \sum_{i=1}^{m} p_{i}=1:$

$$
\sum_{i=1}^{m} p_{i}=\sum_{i=1}^{m}-\frac{X_{i}}{\lambda}=1 \quad \Rightarrow 1=-\frac{n}{\lambda} \quad \Rightarrow \lambda=-n
$$

Substitute λ into p_{i}

$$
p_{i}=\frac{X_{i}}{n}
$$

