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MLE:
Multinomial



Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

* Each element is drawn from one of m outcomes.
P(outcome i) = p;, where /2, p; = 1
 X; = # of trials with outcome i, where X, X; = n

Staring at my math homework like

Let’s give an
example!
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Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where /2, p; = 1

X; = # of trials with outcome i, where 372 X; = n

6
Example: Suppose each RV is outcome of 6-sided die. m = 6, Zpi =1
Roll the dice n = 12 times. i=1

Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Xl — 3)X2 — 2,X3 = O,
X4=3’X5=1'X6=3 CheCk:Xl +X2+"'+X6:12
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Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where /2, p; = 1
X; = # of trials with outcome i, where 372 X; = n

What is the likelihood of observing
the sample(X4, X5, ..., Xi),
given the probabilities p4, 3, ..., Pm?

n!
X1 Xl X!

X1 Xo Xm
pl pz ...pm

X1, X Xm
pl pz oo pm
n!

P1yP2 . yPm
Xl!XZ!---Xm!Xl Xz" Xm
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Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where /2, p; = 1
X; = # of trials with outcome i, where 372 X; = n

What is the likelihood of observing nl
the sample(Xq, X5, ..., X;,), L(B) =
given the probabilities p4, 3, ..., Pm?

Xm

X1 X2 K
X XX, 1 P1 P2 7" Pm

m m
LL(O8) = log(n!) — z log(X;!) + z X;log(p;), suchthat ™™, p; =1
i=1 i

Optimize with X;  Intuitively, probability
Lagrange multipliers in

extra slides

OmLe: Pi = 5, bi = proportion of outcomes
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MLE for X;

When MLEs attack! Vuttinomiat L= o

Consider a 6-sided die.
° Rollthedice n = 12 times.
* Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
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MLE for X;

When MLEs attack! Vuttinomiat L= o

* MLE say you just never roll threes.
* Do you really believe that?

D3 = 0/12 !
Roll more!
prob = frequency But what if you cannot
in limit observe anymore rolls?
Frequentist
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Bayesian
Statistics




Starting Today!

Today we are going to learn something unintuitive,
beautiful, and useful!

We are going to think of probabilities as
random variables.
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A new definition of probability

Flip a coin n + m times, produce n heads.

We don’t know the probability 8 that the coin
comes up heads.

The world’s first coin

Frequentist Bayesian
6 is a single value. 0 is a random variable.
_ n n
0 = nﬂ%ﬂoo I ~ - @’s continuous support: (0, 1)
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Let’s play a game

Roll 2 dice. If neither roll is a 6,

you win (event W). Else, | win (event W ). ﬁ ﬁ

» Before you play, what’s the probability that you win?
* Play once. What'’s the probability that you win?
* Play three more times. What's the probability that you win?

| am constantly re-
evaluating the situation

>~ 2~
& &

Frequentist Bayesian

Bayesian statistics: Constantly update your prior beliefs.
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Bayesian probability

Bayesian statistics: Probability represents our ever-
evolving understanding of the world.

Mixing discrete and continuous random variables,
combined with Bayes’ Theorem, allows us to reason about
probabilities as random variables.
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Mixing discrete and continuous

Let X be a continuous random variable, and
N be a discrete random variable.

pN|X(n|x)fX (x)
py(n)

Bayes’
Theorem:

fX|N(x|n) =

P(N =n|X =x)P(X = x)
P(N =n)

Intuition:  P(X =x|N =n) =

pN|X(n|x)fX(x)
pn(n)

P(N =n|X = x)fx(x)ex
P(N =n)

fX|N(x|n) =

fX|N(x|n)€X =

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 14



Bayes’ Theorem: All Flavors

Let X,Y be continuousand M, N be discrete random variables.

pnimM(n|m)ppy (m)
pn(n)

Original Bayes: pun(mn) =

Mix Bayes #1: fxn(xIn) = Pix(n)f x ()

pn(n)

Mix Bayes #2: pyix(n]x) = fxn(xIn)py (n)
fx(x)

All continuous: fXIY(xb’) _ frixlx)fx ()

fy)
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Mixing discrete and continuous

Let 8 be a random variable for the probability your coin comes up heads,
and N be the number of heads you observe in an experiment.

likelihood  prior

Pn|6 (n|x) fo(x)
py(n)

normalization constant

posterior

f9|N(x|n) =

Prior belief of parameter @ fo(x)
Likelihood of N = n heads, given parameter 6 = x. Pnio (n]x)
Posterior updated belief of parameter 6. fon (x|n)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 16



Beta RV




Beta random variable

def A Beta random variable X is defined as follows:

X ~Beta (Cl, b) PDF  f(x) = x4 1(1 — x)b1

a>0b>0
Support of X: (0,1)

B(a,b)

where B(a,b) = [ % 1(1 — x)?~1dx, normalizing constant
0

ab
(a+b)2(a+b+1)

Expectation E[X] = Variance Var(X) =

a+b

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 18



Beta RV with different a, b

X~Beta(a,b) por f(x) =

xa—l(l _ x)b—l

B(a,b)
a>0,b>0
’ — 1 a—1 _ b—1 ..

Support of X: (0,1) where B(a, b) = [, x*~*(1 — x)?~dx, normalizing constant
5.0 - . 3.0 - SAT word: adumbrate
4.0 - '| Beta(0.2,0.8) Beta(0.8.0.2) Beta(1,1)=Uni(0,1)
3.0 {1 P20 Ky e
2.0 A '\ : 10 Beta(1,1) ~ ~ o e +a thqu case
10 _\k\ Beta(0.8,0.8) 4__‘/ ' o <L (next slide)

'--........T..?..?..w-—--a.“';'"_'..; - 6? ........ ~ -

0.0 T | 0.0 += | | | | = =

00 02 04 06 08 10 00 02 04 06 08 10

Note: PDF symmetric whena = b
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Beta RV with different a, b

X~Beta(a, b)

Match PDF to distribution:

4.0

3.0

2.0

1.0

0.0

B. Beta(2,8)

/ \

A. Beta(b,9)

A. Beta(b,d)
5. Beta(2,8)
C. Beta(8,2)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023

5.0 - :
4.0 - ll Beta(0.2,0.8) Beta(0.8. 0.2) :
41
C. Beta(8,2) 3.0 17 :
oo 2.0 - :
C 1.0 _k Beta(0.8,0.8) /‘/
OO "-o-.....I....ﬁo.?l..-.-.p-al_--';"_ I_ - ’I
00 02 04 06 08 10
3.0 -
2.0 —\Be\ta(i'Q) ........
Beta(l,:?) Sol e
1.0 +————0= ~
Be‘a(l,/ﬂ ...... S o -_
OO .... T T T T = =
0.0 02 04 0.6

In CS109, we focus on Beta functions
where a, b are both positive integers.
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Beta random variable

def A Beta random variable X is defined as follows:

X~Beta(a, b)

a>0b>0

|:> Support of X: (0, 1)

Beta can be a distribution of probabilities.
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Beta can be a distribution of probabilities. X~Beta(a, b)

4.0 7 Beta(2,8) Beta(8,2)
it Beta parameters a, b are

3.0 - \ .
1% Betal5,5) determined by the outcome
' : of an experiment.

But which experiment?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 22



Flipping a coin
with unknown
probability




Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

» Before our experiment, 8 (the probability that the coin

comes up heads) is equally like to be any probability in (O, 1).
* Let N = number of heads.
* Given 6 = x, coin flips are independent.

What is our updated belief of 8 after we observe N = n?

What are reasonable distributions of the following?
1. 6 Bayesian prior 8~Uni(0,1)

2. N|0 =x  Likelihood N|@ = x~Bin(n + m, x)

3. 0IN=n Bayesian posterior. Use Bayes'!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023
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Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

Before our experiment, 8 (the probability that the coin QNUni(%r’lir)'
comes up heads) is equally like to be any probability in (O, 1).

Let N = number of heads. Likelihood:
Given 8 = x, coin flips are independent. N|6 = x~Bin(n + m, x)

What is our updated belief of 8 after we observe N = n? Posterior: fg v (6|n)

pnio (n]x) fo(x) (";m)xn(l_x)m.l
pn(n) N pn(n)
(n + m)
_ n
py (1)

constant with respect to x,
doesn’t depend onsxan. Chris Piech, Mehran Sahami, and Jerry Cain, C5109, Spring 2023 Stanford University 25

fon(x|n) =

1 1
x"(1—x)™ = - x™(1—x)™, wherec = j x™(1 —x)™dx
0



Let’s try it out

1.

Start with a 8~Uni(0,1) over o
probability that a coin lands heads. ® 20 - Prior belief, 0
= 1.0
0.0

0.0 02 04 06 08 1.0

tail

Flip a coin 8 times. Observe n = 7
heads and m = 1 talil

What is our posterior belief of the fon(xIn) = l x”(1—x)t
probability 67?

¢ normalizes to valid PDF

Wait a minute! #looksbetalike

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 26



Beta RV with different a, b

Xa_l(l _ x)b—l

X~Beta(a,b) ror f(x)=

B(a,b
a>0b>0 . ( )
Support of X: (0,1) where B(a, b) = fo x%1(1 — x)?~1dx, normalizing constant
1 7 1 i '
fon(x|n) = B x’(1—x) is the PDF for Beta(8, 2)!

c normalizes to valid PDF
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Let’s try it out

4.0 -
3.0 A
2.0 Prior belief, 8

fx(x)

1.0

0.0

0.0 02 04 06 08 1.0

tail
b

3. What is our posterior belief of the fon(xIn) = l x”(1—x)t
probability 67?

¢ normalizes to valid PDF

Beta(8,2)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 2s



What is our posterior belief of the probability 67

Start with a 8~Uni(0,1) over probability
Observe n = 7 successes and m = 1 failures
Your new belief about the probability of 8 is:

1

1
fow (xIn) = — x’(1—x)", wherec = j x7(1—x)'dx
0

Posterior belief, 8| N

Posterior belief, 8|N: 4.0 -
Beta(a = 8,b = 2) S 301
o (xln) = - 3711 =y 2 20
OIN C “ 1.0 -
— JR— OO I I I I |
Beta(@=n+1b=m+1) 0.0 02 04 06 08 1.0

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 X Stanford University 29



CS109 focus: Beta where a, b both positive integers x~geta(a,b)

4.0 1 Beta(2,8) Beta(8,2) Beta parameters a, b are
S AR determined by the outcome

1 \ Beta(5,5) _
\ of an experiment.
2.0

1.0 a = “successes” + 1

b = “failures” + 1

0.0

* Beta (in CS109) models the randomness of the
probability of experiment success.
* Beta parameters depend on our data and our prior.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 30



Conjugate
distributions




A note about our prior

1. Start with a 6~Uni(0,1) over

probability that a coin lands heads.

2. Flip a coin 8 times. Observe n = 7
heads and m = 1 tail

3. What is our posterior belief of the
probability 87

4.0 -
3.0
A . -
% 20 A Prior belief, 8
H\l.O
O-O T T T T 1
00 02 04 06 08 1.0
X

nY
okay D@

1
foin(xIn) = B x’(1—x)?

¢ normalizes to valid PDF

Wait another minute!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 32



Beta RV with different a, b

Review

5.0

4.0 -

3.0
2.0
1.0
0.0

Beta(0.2,0.8) Beta(0.8.0.2) :

e®
-~ L ieeer
.............. e e d e e - -

00 02 04 06 08 1.0

3.0

2.0

1.0

0.0

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023

Beta(1,1)=Uni(0,1)

—\Be\ta(l,g)
Beta(l,iB S~
geraliher

0.0 02 04
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A note about our prior

1. Start with a 8~Uni(0,1) over e
probability that a coin lands heads. = 20 Prior belief, 0
= 1.0
Beta(l,l) 0.0

0.0 02 04 06 08 1.0
X

Check this out. Beta(a = 1,b = 1):

— a-—1 1 — b—-1
f(x) Bab)” (1—x)
B 1
fol 1dx
=1 where0 < x <1

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 34



Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning;
* Prior and posterior parametric forms are the same

(proof on next slide)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 35



Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning;:
If our prior belief of the parameter is Beta, and
Our experiment is Bernoulli, then (observe n successes, m failures)
Our posterior is also Beta.

Proof:  6~Beta(a,b) N|6~Bin(n + m, x)

fo ey = PReOT () O Rl T L i
| pn (1) =

=C - x"(1—=x)" -x21(1-x)P?

—C - xn+a—1(1 _ x)m+b—1

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 36



Beta is a conjugate distribution for Bernoulli | Thisis the main
takeaway of Beta. |

Beta is a conjugate distribution for Bernoulli, meaning;
Prior and posterior parametric forms are the same

Practically, conjugate means easy update:
Add number of “heads” and “tails” seen to Beta parameters.

You can invent a prior to express how biased you believe the coin is a
priori:

0~Beta(a, b): pretend you’ve conducted (a + b — 2) imaginary trials, where

(a — 1) trials produced a head and (b — 1) produced a

Choosing Beta(1, 1) = Uni(0, 1) means you don’t hold any prior beliefs
Prior Beta(a = nypqg +1,b = mypqq + 1)

Experiment Observe n successes and m failures

Posterior Beta(a = Njmag TN+ 1,b = Mimag T M+ 1)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 37



Medicinal Beta

- Before being tested, a medicine is believed to "work" 80% of the time.
* The medicine is administered to 20 patients.
* |t "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let p be the probability
your drug works.

20 ' A frequentist view will not incorporate
prior/expert belief about probability.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 3s



Medicinal Beta

- Before being tested, a medicine is believed to "work" 80% of the time.
* The medicine is administered to 20 patients.

* It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Bayesian

Let 8 be the probability
your drug works.

@ is a random variable.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain,

CS109, Spring 2023

Stanford University 39



Prior Beta(a = Nypag + 1,0 = Mippqq + 1)

Medicinal Beta Posterior Beta(a = Nymgg + N+ 1,b = Mypqy + m+ 1)

- Before being tested, a medicine is believed to "work" 80% of the time.
* The medicine is administered to 20 patients.
* |t "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"? (Bayesian interpretation)

What is the prior distribution of 87? (select all that apply)
A. 6~Beta(1,1) = Uni(0,1)

B. 6~Beta(81,101)
C. 6~Beta(80,20)
D. 6~Beta(81,21)
. 6~Beta(5,2)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 40



Prior Beta(a = Nypag + 1,0 = Mippqq + 1)

Medicinal Beta Posterior Beta(a = Nymgg + N+ 1,b = Mypqy + m+ 1)

- Before being tested, a medicine is believed to "work" 80% of the time.
* The medicine is administered to 20 patients.
* |t "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"? (Bayesian interpretation)

What is the prior distribution of 87? (select all that apply)

A. 6~Beta(1,1) = Uni(0,1)
B. 6~Beta(81,101)
C. 6~Beta(80,20)
@ 6~Beta(81,21) Interpretation: 80 successes / 100 imaginary trials
@ 6~Beta(5, 2)
(you can choose either based on how strongly you believe in prior data.

We choose E on next slide)

an’ Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 41



Prior Beta(a = Nypag + 1,0 = Mippqq + 1)

Medicinal Beta Posterior Beta(a = Nymgg + N+ 1,b = Mypqy + m+ 1)

Before being tested, a medicine is believed to "work" 80% of the time.
The medicine is administered to 20 patients.
It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"? (Bayesian interpretation)
Prior: 0~Beta(a =5,b = 2) i,g _
Posterior: O~Beta(a =5+ 14,b=2+6) 30- posterior
~Beta(a = 19,b = 8) ool ]k
1.0 - (..
0.0 | | T T |
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Prior Beta(a = Nypag + 1,0 = Mippqq + 1)

Medicinal Beta Posterior Beta(a = Nymgg + N+ 1,b = Mypqy + m+ 1)

- Before being tested, a medicine is believed to "work" 80% of the time.
* The medicine is administered to 20 patients.
* |t "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"? (Bayesian interpretation)
Prior: 6~Beta(a = 5,b = 2) 451:8 mode
Posterior: 6~Beta(a=5+14,b=2+6) 30- Posterior
~Beta(a = 19,b = 8) 2.0 |
What do you report to pharmacists? 3:8 _ . LS

A. EXpectation of posterior 00 02 04
5. Mode of posterior

C. Distribution of posterior
0. Nothing

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 43



Prior Beta(a = Nypag + 1,0 = Mippqq + 1)

Medicinal Beta Posterior Beta(a = Nymgg + N+ 1,b = Mypqy + m+ 1)

Before being tested, a medicine is believed to "work" 80% of the time.
The medicine is administered to 20 patients.
It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"? (Bayesian interpretation)
mode
Prior: 0~Beta(a =5,b = 2) i,g _
Posterior: 6~Beta(a =5+14,b=2+6) 30 Posterior
~Beta(a = 19,b = 8) 2.0 |
: 1.0 | Y
What do you report to pharmacists? 00 e
a 19 0.0 02 04 X
E[0] = = ~ 0.7
[6] a+b 19+8 0-70
a—1 18 In CS109, we report the mode: The
mode(8) = atb—_2 1817 0.72 “most likely” parameter given the data.
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Food for thought

= In this lecture: If nothing is known about the parameter p,
Bayesian statisticians will:
Treat the parameter as a random variable 6

XNBer(p) with a Beta prior distribution

Conduct experiments

Based on the outcomes of those experiments,

update the posterior distribution of 6
Food for thought:

Any parameter for a “parameterized”

random variable can be thoughtofas Y ~N (1, 0'2)
a random variable.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 45



Estimating our parameter directly

Maximum
Likelihood
Estimator

(MLE)

What is the parameter 0 L(B) =f(X1,X,,...,X,]0)
that maximizes the - = .
likelihood = E[f(xi' )

of our observed data

(X1, X2, ey X7)? Omie = argmax f (X;, X, .., X, |0)

likelihood of data

Observations:

MLE maximizes probability of observing data

given a parameter 0. It’s fitting the curve to match the data.
If we are estimating 8, shouldn’t we maximize

the probability of 8 directly? SAT word: adumbrate

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 46



Extra: MLE:
Multinomial

derivation




Okay, just one more MLE with the Multinomial

Consider a sample of n i.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where /2, p; = 1
X; = # of trials with outcome i, where 372 X; = n

What is the likelihood of observing nl
the sample(Xq, X5, ..., X;,), L(B) =
given the probabilities p4, 3, ..., Pm?

Xm

X1 X2 K
X XX, 1 P1 P2 7" Pm

m m
LL(O8) = log(n!) — z log(X;!) + z X;log(p;), suchthat ™™, p; =1
i=1 i=1

X;  Intuitively, probability

OmLe: Pi = 5, bi = proportion of outcomes

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 4s



Optimizing MLE for Multinomial

0 = (p1,02) - Pm )
Omp = arg max LL(6), where zpl =

=

Use Lagrange multipliers
to account for constraint

m (drop
Lagrange
mtﬁtipli%ars: AB) =LL(O)+ A z p; — ) ZX log(p;) + A (z p; — 1) non-p;
i=1 i=1 terms)
i i dA(O 1 .
leferentllate w.r.t. (6) X, —+A=0 o p. = _)&
each p;, in turn: op; D; L 21
Solve for A, noting il X, n
m m Epi:z_7:1 :>1:—i >A=-n

X, =n, E =1
Z ' , Pi i=1 i=1
1=1 =1

Substitute A into p; p; =

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023 Stanford University 49
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