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Okay,	just	one	more	MLE	with	the	Multinomial
Consider a sample of 𝑛 iid random variables where:
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome	𝑖 = 𝑝!, where ∑!"#

$ 𝑝! = 1
• 𝑋! = # of trials with outcome 𝑖, where ∑!"#

$ 𝑋! = 𝑛

3

Let’s give an 
example!
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Okay,	just	one	more	MLE	with	the	Multinomial
Consider a sample of 𝑛 iid random variables where:
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome	𝑖 = 𝑝!, where ∑!"#

$ 𝑝! = 1
• 𝑋! = # of trials with outcome 𝑖, where ∑!"#

$ 𝑋! = 𝑛
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Example: Suppose each RV is outcome of 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe data: 3	ones, 2	twos, 0	threes,	3 fours, 1 fives, 3 sixes

𝑋! = 3, 𝑋" = 2, 𝑋# = 0,	
𝑋$ = 3, 𝑋% = 1, 𝑋& = 3 Check: 𝑋! + 𝑋" +⋯+ 𝑋& = 12

𝑚 = 6,	'
!"#

$

𝑝! = 1
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Okay,	just	one	more	MLE	with	the	Multinomial
Consider a sample of 𝑛 iid random variables where:
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome	𝑖 = 𝑝!, where ∑!"#

$ 𝑝! = 1
• 𝑋! = # of trials with outcome 𝑖, where ∑!"#

$ 𝑋! = 𝑛

1. What is the likelihood of observing
the sample 𝑋#, 𝑋%, … , 𝑋$ ,
given the probabilities 𝑝#, 𝑝%, … , 𝑝$?
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A.  
𝑛!

𝑋#! 𝑋%! ⋯𝑋$!
𝑝#
&!𝑝%

&" ⋯𝑝$
&#

B.  𝑝#
&!𝑝%

&" ⋯𝑝$
&#

C.  
𝑛!

𝑋#! 𝑋%! ⋯𝑋$!
𝑋#
'!𝑋%

'" ⋯𝑋$
'#
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Okay,	just	one	more	MLE	with	the	Multinomial
Consider a sample of 𝑛 iid random variables where:
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome	𝑖 = 𝑝!, where ∑!"#

$ 𝑝! = 1
• 𝑋! = # of trials with outcome 𝑖, where ∑!"#

$ 𝑋! = 𝑛

1. What is the likelihood of observing
the sample 𝑋#, 𝑋%, … , 𝑋$ ,
given the probabilities 𝑝#, 𝑝%, … , 𝑝$?

2. What is 𝜃+,-?
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𝐿 𝜃 =
𝑛!

𝑋#! 𝑋%! ⋯𝑋$!
𝑝#
&!𝑝%

&" ⋯𝑝$
&#

𝐿𝐿 𝜃 = log 𝑛! −5
!"#

$

log 𝑋!! +5
!

$

𝑋! log 𝑝! , such that ∑!"#
$ 𝑝! = 1

𝜃+,- : 	 𝑝. =
𝑋.
𝑛

Intuitively, probability
𝑝! = proportion of outcomes

Optimize with
Lagrange multipliers in 

extra slides
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When	MLEs	attack!
Consider a 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe: 3	ones, 2	twos, 0	threes, 3 fours, 1 fives, 3 sixes

What is 𝜃+,-?

7

MLE for
Multinomial: 𝑝! =

𝑋!
𝑛
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When	MLEs	attack!
Consider a 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe: 3	ones, 2	twos, 0	threes, 3 fours, 1 fives, 3 sixes
𝜃+,- :
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𝑝! = 3/12
 𝑝" = 2/12
 𝑝# = 0/12
 𝑝$ = 3/12
 𝑝% = 1/12
 𝑝& = 3/12

⚠

• MLE say you just never roll threes.
• Do you really believe that?

Frequentist

Roll more!
prob = frequency 

in limit
But what if you cannot 
observe anymore rolls?

MLE for
Multinomial: 𝑝! =

𝑋!
𝑛



Bayesian	
Statistics
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Starting	Today!

Today we are going to learn something unintuitive,
beautiful, and useful!

10

We are going to think of probabilities as
random variables.
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A	new	definition	of	probability
Flip a coin 𝑛 + 𝑚 times, produce 𝑛 heads.
We don’t know the probability 𝜃 that the coin
comes up heads.
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The world’s first coin

Frequentist

𝜃 is a single value.

𝜃 = lim
123→5

𝑛
𝑛 + 𝑚

≈
𝑛

𝑛 + 𝑚

Bayesian

𝜃 is a random variable.

𝜃’s continuous support: (0, 1)
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Let’s	play	a	game
Roll 2 dice. If neither roll is a 6,
you win (event 𝑊). Else, I win (event 𝑊6).

• Before you play, what’s the probability that you win?
• Play once. What’s the probability that you win?
• Play three more times. What’s the probability that you win?
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Frequentist

𝑃 𝑊 =
5
6

"

Bayesian

I am constantly re-
evaluating the situation

Bayesian statistics: Constantly update your prior beliefs.
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Bayesian	probability

Bayesian statistics: Probability represents our ever-
evolving understanding of the world.

Mixing discrete and continuous random variables, 
combined with Bayes’ Theorem, allows us to reason about 

probabilities as random variables.

13
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Mixing	discrete	and	continuous
Let 𝑋 be a continuous random variable, and
𝑁 be a discrete random variable.

14

𝑃 𝑋 = 𝑥 𝑁 = 𝑛 =
𝑃 𝑁 = 𝑛|𝑋 = 𝑥 𝑃 𝑋 = 𝑥

𝑃 𝑁 = 𝑛

Bayes’ 
Theorem: 𝑓7|9 𝑥|𝑛 =

𝑝9|7 𝑛|𝑥 𝑓7 𝑥
𝑝9 𝑛

Intuition:

𝑓&|) 𝑥|𝑛 𝜀& =
𝑃 𝑁 = 𝑛|𝑋 = 𝑥 𝑓& 𝑥 𝜀&

𝑃 𝑁 = 𝑛
𝑓&|) 𝑥|𝑛 =

𝑝)|& 𝑛|𝑥 𝑓& 𝑥
𝑝) 𝑛
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Bayes’	Theorem:	All	Flavors
Let 𝑋, 𝑌 be continuous

Original Bayes:  𝑝+|9 𝑚|𝑛 = :!|# 1|3 :# 3
:! 1

Mix Bayes #1:  𝑓7|9 𝑥 𝑛 =
:!|$ 1|; <$ ;

:! 1

Mix Bayes #2:  𝑝9|7 𝑛|𝑥 = <$|! ;|1 :! 1
<$ ;

All continuous:  𝑓7|= 𝑥 𝑦 = <%|$ >|; <$ ;
<% >

15

and	𝑀, 𝑁 be discrete random variables.
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Mixing	discrete	and	continuous
Let 𝜃 be a random variable for the probability your coin comes up heads, 
and	𝑁 be the number of heads you observe in an experiment.

𝑓<|= 𝑥|𝑛 =
𝑝=|< 𝑛|𝑥 𝑓< 𝑥

𝑝= 𝑛

• Prior belief of parameter 𝜃      𝑓? 𝑥
• Likelihood of 𝑁 = 𝑛 heads, given parameter 𝜃 = 𝑥.  𝑝9|? 𝑛|𝑥
• Posterior updated belief of parameter 𝜃.   𝑓?|9 𝑥|𝑛

16

normalization constant

posterior
likelihood prior



Beta	RV
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Beta	random	variable
def A Beta random variable 𝑋 is defined as follows:
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𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏)

Variance  Expectation   

PDF

𝐸 𝑋 =
𝑎

𝑎 + 𝑏 Var 𝑋 =
𝑎𝑏

𝑎 + 𝑏 % 𝑎 + 𝑏 + 1

Support of 𝑋: 0, 1

𝑎 > 0, 𝑏 > 0
where 𝐵 𝑎, 𝑏 = ∫%

#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant
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Beta	RV	with	different	𝑎, 𝑏

19

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏) PDF

Support of 𝑋: 0, 1 where 𝐵 𝑎, 𝑏 = ∫%
#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant

𝑎 > 0, 𝑏 > 0

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(0.2,0.8) Beta(0.8. 0.2)

Beta(0.8,0.8)

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1) + a third case
(next slide)

Note: PDF symmetric when 𝑎 = 𝑏

Beta(1,1)=Uni 0,1
SAT word: adumbrate
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta	RV	with	different	𝑎, 𝑏
Match PDF to distribution:

20

A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(0.2,0.8) Beta(0.8. 0.2)

Beta(0.8,0.8)

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1)

A. Beta(5,5)

B. Beta(2,8) C. Beta(8,2)

𝑋~Beta(𝑎, 𝑏)

In CS109, we focus on Beta functions 
where 𝑎, 𝑏 are both positive integers.
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Beta	random	variable
def A Beta random variable 𝑋 is defined as follows:

21

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏)

Variance  Expectation   

PDF

𝐸 𝑋 =
𝑎

𝑎 + 𝑏 Var 𝑋 =
𝑎𝑏

𝑎 + 𝑏 % 𝑎 + 𝑏 + 1

Support of 𝑋: 0, 1

𝑎 > 0, 𝑏 > 0

Beta can be a distribution of probabilities.

where 𝐵 𝑎, 𝑏 = ∫%
#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta	can	be	a	distribution	of	probabilities.

22

Beta parameters 𝑎, 𝑏 are 
determined by the outcome 
of an experiment.

But which experiment?

𝑋~Beta(𝑎, 𝑏)

Beta(5,5)

Beta(2,8) Beta(8,2)



Flipping	a	coin	
with	unknown	
probability

23
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Flip	a	coin	with	unknown	probability
Flip a coin 𝑛 + 𝑚 times, observe 𝑛 heads.
• Before our experiment, 𝜃	(the probability that the coin

comes up heads) is equally like to be any probability in (0, 1).
• Let 𝑁 = number of heads.
• Given 𝜃 = 𝑥, coin flips are independent.

What is our updated belief of 𝜃 after we observe 𝑁 = 𝑛?

24

What are reasonable distributions of the following?
1.  𝜃
2.  𝑁|𝜃 = 𝑥
3.  𝜃|𝑁 = 𝑛

Bayesian prior 𝜃~Uni 0,1

Likelihood 𝑁|𝜃 = 𝑥~Bin(𝑛 + 𝑚, 𝑥)

Bayesian posterior. Use Bayes’!
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Flip	a	coin	with	unknown	probability
Flip a coin 𝑛 + 𝑚 times, observe 𝑛 heads.
• Before our experiment, 𝜃	(the probability that the coin

comes up heads) is equally like to be any probability in (0, 1).
• Let 𝑁 = number of heads.
• Given 𝜃 = 𝑥, coin flips are independent.

What is our updated belief of 𝜃 after we observe 𝑁 = 𝑛?

25

Posterior: 𝑓*|) 𝜃 𝑛

Likelihood:
𝑁|𝜃 = 𝑥~Bin(𝑛 + 𝑚, 𝑥)

Prior:
 𝜃~Uni 0,1

𝑓?|9 𝑥 𝑛 =
𝑝9|? 𝑛|𝑥 𝑓? 𝑥

𝑝9 𝑛 =
𝑛 +𝑚
𝑛 𝑥+ 1 − 𝑥 $ ⋅ 1

𝑝) 𝑛

=
𝑛 + 𝑚
𝑛

𝑝) 𝑛
𝑥+ 1 − 𝑥 $

constant with respect to 𝑥,
doesn’t depend on 𝑥

=
1
𝑐
	𝑥+ 1 − 𝑥 $, 	where	𝑐 = H

-

#
𝑥+ 1 − 𝑥 $𝑑𝑥
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Let’s	try	it	out
1. Start with a 𝜃~Uni 0,1  over 

probability that a coin lands heads.

2. Flip a coin 8 times. Observe 𝑛 = 7 
heads and 𝑚 = 1 tail

3. What is our posterior belief of the 
probability 𝜃?

26

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

! !
" Prior belief, #

"

𝑓?|9 𝑥 𝑛 =
1
𝑐
	𝑥N 1 − 𝑥 !

𝑐 normalizes to valid PDF

Wait a minute! #looksbetalike

tail
👇

Prior belief, 𝜃
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Beta	RV	with	different	𝑎, 𝑏

27

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏) PDF

Support of 𝑋: 0, 1 where 𝐵 𝑎, 𝑏 = ∫%
#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant

𝑎 > 0, 𝑏 > 0

is the PDF for Beta(8, 2)!𝑓?|9 𝑥 𝑛 =
1
𝑐
	𝑥N 1 − 𝑥 !

𝑐 normalizes to valid PDF
🌟
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Let’s	try	it	out
1. Start with a 𝜃~Uni 0,1  over 

probability that a coin lands heads.

2. Flip a coin 8 times. Observe 𝑛 = 7 
heads and 𝑚 = 1 tail

3. What is our posterior belief of the 
probability 𝜃?

28

𝑓?|9 𝑥 𝑛 =
1
𝑐
	𝑥N 1 − 𝑥 !

𝑐 normalizes to valid PDF

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

! !
" Prior belief, #

"

Beta 8,2

tail
👇

Prior belief, 𝜃



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

3.	What	is	our	posterior	belief	of	the	probability	𝜃?
• Start with a 𝜃~Uni 0,1  over probability
• Observe 𝑛 = 7 successes and 𝑚 = 1 failures
• Your new belief about the probability of 𝜃 is:

𝑓?|9 𝑥 𝑛 =
1
𝑐
	𝑥N 1 − 𝑥 !,where	𝑐 = K

P

!
𝑥N 1 − 𝑥 !𝑑𝑥

29

𝑓 *
|)
𝑥|
𝑛

Posterior belief, 𝜃|𝑁

𝑥

Posterior belief, 𝜃|𝑁:
Beta(𝑎 = 8, 𝑏 = 2)

Beta(𝑎 = 𝑛 + 1, 𝑏 = 𝑚 + 1)

𝑓?|9 𝑥 𝑛 =
1
𝑐
	𝑥QA! 1 − 𝑥 "A!
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

CS109	focus:	Beta	where	𝑎, 𝑏	both	positive	integers

30

Beta parameters 𝑎, 𝑏 are 
determined by the outcome 

of an experiment.

𝑎 =  “successes” + 1
𝑏 =  “failures” + 1

𝑋~Beta(𝑎, 𝑏)

Beta(5,5)

Beta(2,8) Beta(8,2)

• Beta (in CS109) models the randomness of the 
probability of experiment success.

• Beta parameters depend on our data and our prior.



Conjugate	
distributions

31
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A	note	about	our	prior
1. Start with a 𝜃~Uni 0,1  over 

probability that a coin lands heads.

2. Flip a coin 8 times. Observe 𝑛 = 7 
heads and 𝑚 = 1 tail

3. What is our posterior belief of the 
probability 𝜃?

32

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

! !
" Prior belief, #

"

okay

𝑓?|9 𝑥 𝑛 =
1
𝑐
	𝑥N 1 − 𝑥 !

𝑐 normalizes to valid PDF

Wait another minute!Beta 8,2

Prior belief, 𝜃
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Beta	RV	with	different	𝑎, 𝑏

33

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏) PDF

Support of 𝑋: 0, 1 where 𝐵 𝑎, 𝑏 = ∫%
#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant

𝑎 > 0, 𝑏 > 0

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1)

Note: PDF symmetric when 𝑎 = 𝑏

Beta(1,1)=Uni 0,1

Review
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A	note	about	our	prior
1. Start with a 𝜃~Uni 0,1  over 

probability that a coin lands heads.

2. Flip a coin 8 times. Observe 𝑛 = 7 
heads and 𝑚 = 1 tail

3. What is our posterior belief of the 
probability 𝜃?

34

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

! !
" Prior belief, #

"

Check this out. Beta 𝑎 = 1, 𝑏 = 1 :

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥./# 1 − 𝑥 0/#

where 0 < 𝑥 < 1

=
1

∫-
# 1𝑑𝑥

= 1Beta 8,2

Beta 1,1

Prior belief, 𝜃
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Beta	is	a	conjugate	distribution	for	Bernoulli
Beta is a conjugate distribution for Bernoulli, meaning:
• Prior and posterior parametric forms are the same

35

(proof on next slide)
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Beta	is	a	conjugate	distribution	for	Bernoulli
Beta is a conjugate distribution for Bernoulli, meaning:
1. If our prior belief of the parameter is Beta, and
2. Our experiment is Bernoulli, then
3. Our posterior is also Beta.

36

Proof: 𝜃~Beta(𝑎, 𝑏) 𝑁|𝜃~Bin(𝑛 + 𝑚, 𝑥)

𝑓?|9 𝑥 𝑛 =
𝑝9|? 𝑛|𝑥 𝑓? 𝑥

𝑝9 𝑛 =

𝑛 +𝑚
𝑚 𝑥+ 1 − 𝑥 $ ⋅ 1

𝐵 𝑎, 𝑏 𝑥./# 1 − 𝑥 0/#

𝑝) 𝑛

= 𝐶 ⋅ 𝑥1 1 − 𝑥 3 ⋅ 𝑥@A! 1 − 𝑥 BA!constants that 
don’t depend on 𝑥

= 𝐶 ⋅ 𝑥12@A! 1 − 𝑥 32BA! ✅

(observe 𝑛 successes, 𝑚 failures)
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Beta	is	a	conjugate	distribution	for	Bernoulli
Beta is a conjugate distribution for Bernoulli, meaning:
• Prior and posterior parametric forms are the same
• Practically, conjugate means easy update:

  Add number of “heads” and “tails” seen to Beta parameters.

You can invent a prior to express how biased you believe the coin is a 
priori:
• 𝜃~Beta(𝑎, 𝑏): pretend you’ve conducted 𝑎 + 𝑏 − 2  imaginary trials, where

   𝑎 − 1  trials produced a head and 𝑏 − 1  produced a tail
• Choosing Beta 1, 1 = Uni(0, 1) means you don’t hold any prior beliefs

37

This is the main 
takeaway of Beta.

Prior

Posterior

Experiment Observe 𝑛 successes and 𝑚 failures

Beta(𝑎 = 𝑛!$.1 + 1, 𝑏 = 𝑚!$.1 + 1) 

Beta 𝑎 = 𝑛!$.1 + 𝑛 + 1, 𝑏 = 𝑚!$.1 +𝑚 + 1 	
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Medicinal	Beta
• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

38

Frequentist

Let 𝑝 be the probability
your drug works.

𝑝 ≈
14
20

= 0.7

Bayesian

A frequentist view will not incorporate 
prior/expert belief about probability.
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Medicinal	Beta
• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

39

Frequentist

Let 𝑝 be the probability
your drug works.

𝑝 ≈
14
20

= 0.7

Bayesian

Let 𝜃 be the probability
your drug works.

𝜃 is a random variable.
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Medicinal	Beta
• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?
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What is the prior distribution of 𝜃? (select all that apply)

A.  𝜃~Beta 1, 1 = Uni 0, 1
B.  𝜃~Beta 81, 101
C.  𝜃~Beta 80, 20
D.  𝜃~Beta 81, 21
E.  𝜃~Beta 5, 2

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

🤔
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Medicinal	Beta
• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?
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What is the prior distribution of 𝜃? (select all that apply)

A.  𝜃~Beta 1, 1 = Uni 0, 1
B.  𝜃~Beta 81, 101
C.  𝜃~Beta 80, 20
D.  𝜃~Beta 81, 21
E.  𝜃~Beta 5, 2

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

Interpretation: 80 successes / 100 imaginary trials

(you can choose either based on how strongly you believe in prior data. 
We choose E on next slide)
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Medicinal	Beta
• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

42

Prior:  𝜃~Beta 𝑎 = 5, 𝑏 = 2  
Posterior: 𝜃~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6
                       ~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥
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Medicinal	Beta
• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?
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Prior:  𝜃~Beta 𝑎 = 5, 𝑏 = 2  
Posterior: 𝜃~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6
                       ~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

What do you report to pharmacists?
A. Expectation of posterior
B. Mode of posterior
C. Distribution of posterior
D. Nothing

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥

mode

🤔
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Medicinal	Beta
• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?
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Prior:  𝜃~Beta 𝑎 = 5, 𝑏 = 2  
Posterior: 𝜃~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6
                       ~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

What do you report to pharmacists? 0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥

mode

In CS109, we report the mode: The 
“most likely” parameter given the data.

𝐸 𝜃 =
𝑎

𝑎 + 𝑏
=

19
19 + 8

≈ 0.70

mode 𝜃 =
𝑎 − 1

𝑎 + 𝑏 − 2
=

18
18 + 7

≈ 0.72
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Food	for	thought

45

𝑋~Ber 𝑝

In this lecture: If nothing is known about the parameter 𝑝,
Bayesian statisticians will:
• Treat the parameter as a random variable 𝜃 

with a Beta prior distribution
• Conduct experiments
• Based on the outcomes of those experiments, 

update the posterior distribution of 𝜃
Food for thought:

Any parameter for a “parameterized” 
random variable can be thought of as 

a random variable.
𝑌~𝒩 𝜇, 𝜎.

👉
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Estimating	our	parameter	directly

46

Maximum 
Likelihood 
Estimator

(MLE)

What is the parameter 𝜃
that maximizes the 
likelihood
of our observed data 
𝑥#, 𝑥%, … , 𝑥+ ? 𝜃234 = arg	max

*
𝑓 𝑋#, 𝑋%, … , 𝑋+|𝜃

𝐿 𝜃 = 𝑓 𝑋#, 𝑋%, … , 𝑋+|𝜃

=T
!"#

+

𝑓 𝑋!|𝜃

(our focus so far)

likelihood of data

Observations:
• MLE maximizes probability of observing data

given a parameter 𝜃.  It’s fitting the curve to match the data.
• If we are estimating 𝜃, shouldn’t we maximize

the probability of 𝜃 directly? SAT word: adumbrate



Extra:	MLE:	
Multinomial	
derivation

47
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Okay,	just	one	more	MLE	with	the	Multinomial
Consider a sample of 𝑛 i.i.d. random variables where
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome	𝑖 = 𝑝!, where ∑!"#

$ 𝑝! = 1
• 𝑋! = # of trials with outcome 𝑖, where ∑!"#

$ 𝑋! = 𝑛

1. What is the likelihood of observing
the sample 𝑋#, 𝑋%, … , 𝑋$ ,
given the probabilities 𝑝#, 𝑝%, … , 𝑝$?

2. What is 𝜃+,-?

48

𝐿 𝜃 =
𝑛!

𝑋#! 𝑋%! ⋯𝑋$!
𝑝#
&!𝑝%

&" ⋯𝑝$
&#

𝐿𝐿 𝜃 = log 𝑛! −5
!"#

$

log 𝑋!! +5
!"#

$

𝑋! log 𝑝! , such that ∑!"#
$ 𝑝! = 1

𝜃+,- : 	 𝑝. =
𝑋.
𝑛

Intuitively, probability
𝑝! = proportion of outcomes
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Optimizing	MLE	for	Multinomial
𝜃 = 𝑝!, 𝑝", … , 𝑝3 	
𝜃+,- = arg	max

?
𝐿𝐿 𝜃  

49

5
!"#

$

𝑝! = 1, where Use Lagrange multipliers
to account for constraint

𝐴 𝜃 = 𝐿𝐿 𝜃 + 𝜆 5
!"#

$

𝑝! − 1 =5
!"#

$

𝑋! log 𝑝! + 𝜆 5
!"#

$

𝑝! − 1
(drop 
non-𝑝! 
terms)

𝜕𝐴 𝜃
𝜕𝑝!

= 𝑋!
1
𝑝!
+ 𝜆 = 0Differentiate w.r.t.

each 𝑝!, in turn: ⇒	𝑝! = −
𝑋!
𝜆

Solve for 𝜆, noting

5
!"#

$

𝑋! = 𝑛,5
!"#

$

𝑝! = 1:

Lagrange
multipliers:

5
!"#

$

𝑝! =5
!"#

$

−
𝑋!
𝜆
= 1 ⇒ 1 = −

𝑛
𝜆 ⇒ 𝜆 = −𝑛

Substitute 𝜆 into 𝑝! 𝑝! =
𝑋!
𝑛


