Table of Contents

- 2 Sampling Definitions
- 11 Unbiased Estimators
- 23 Standard Error
- 29 Bootstrap: Sample Mean
- 40 Bootstrap: Sample Variance
- 57 Bootstrap: p-values

19: Sampling and the Bootstrap

Jerry Cain February 23, 2024

Lecture Discussion on Ed

Sampling definitions

Motivating example

You want to know the true mean and variance of happiness in Bhutan.

- But you can't ask everyone.
- You poll 200 random people.
- Your data looks like this:

Happiness =
$$\{72, 85, 79, 91, 68, ..., 71\}$$

The mean of all these numbers is 83.

Is this the true mean happiness of Bhutanese people?

Population

This is a population.

Sample

A sample is selected from a population.

Sample

A **sample** is selected from a population.

Reasonable Questions Starting Out

- 1. In situations where we can't obverse the entire population, what can we safely infer by polling a sample drawn from that population?
- 2. How large does your sample need to be before your conclusions become trustworthy, and how do we express confidence in what we conclude.
- 3. Are there alternative ways to infer population statistics without polling entire populations?

A sample, mathematically

Consider n random variables $X_1, X_2, ..., X_n$.

The sequence $X_1, X_2, ..., X_n$ is a sample from distribution F if:

• X_i are all independent and identically distributed (iid)

• X_i all have same distribution function F (the underlying distribution),

where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$

A sample, mathematically

A sample of size 8:

$$(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

The **realization** of a sample of size 8: (59, 87, 94, 99, 87, 78, 69, 91)

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about about happiness.

But we only have 200 people—or rather, a sample.

Today: If we only have a single sample,

- How do we report **estimated** statistics?
 - We're careful to call them estimated mean and estimated variance, since they're based on samples (i.e., experiments)
- How do we report estimated errors on these estimates?
- How do we perform something called hypothesis testing? Oh, and what is it?

Unbiased estimators

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about happiness.

But we only have 200 people (a sample).

These population-level statistics are unknown:

- μ , the population mean
- σ^2 , the population variance

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about happiness.

But we only have 200 people (a sample).

- From these 200 people, what is our <u>best</u> estimate of the population mean and the population variance?
- How exactly do we define <u>best estimate?</u>

Estimating the population mean

1. What is our best estimate of μ , the mean happiness of Bhutanese people?

If we only have $(X_1, X_2, ..., X_n)$:

The best estimate of μ is the sample mean:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \bar{X} is an <u>unbiased estimator</u> of the population mean μ .

$$E[\bar{X}] = \mu$$

Intuition: By the CLT, $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ If we could take *multiple* samples of size n:

1. For each sample, compute sample mean

- On average, we would get the population mean

Sample mean

Even if we can't report μ , we can report our sample mean 83.03, which is an unbiased estimate of μ .

Estimating the population variance

2. What is σ^2 , the variance of happiness of Bhutanese people?

If we knew the entire population $(x_1, x_2, ..., x_N)$:

population mean

population variance
$$\sigma^2 = E[(X - \mu)^2] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

If we only have one sample: $(X_1, X_2, ..., X_n)$: sample mean

sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Actual, σ^2

population mean

population variance
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Population size, N

Calculating population statistics exactly requires us knowing all N datapoints.

Actual, σ^2

Estimate, S²

population mean

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

population variance
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
 sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

Population size, N

sample mean

population mean

Estimate, S²

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Population size, N

sample mean

150

Estimate, S²

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Population size, N

Sample variance is an estimate using an estimate, so it requires additional scaling.

Estimating the population variance

2. What is σ^2 , the variance of happiness of Bhutanese people?

If we only have a sample, $(X_1, X_2, ..., X_n)$:

The best estimate of
$$\sigma^2$$
 is the **sample variance**: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

 S^2 is an **unbiased estimator** of the population variance, σ^2 . $E[S^2] = \sigma^2$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Proof that S^2 is unbiased (just for reference)

$$E[S^2] = \sigma^2$$

$$E[S^{2}] = E\left[\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right] \Rightarrow (n-1)E[S^{2}] = E\left[\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right]$$

$$(n-1)E[S^{2}] = E\left[\sum_{i=1}^{n}((X_{i}-\mu)+(\mu-\bar{X}))^{2}\right] \qquad \text{(introduce }\mu-\mu)$$

$$= E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}+\sum_{i=1}^{n}(\mu-\bar{X})^{2}+2\sum_{i=1}^{n}(X_{i}-\mu)(\mu-\bar{X})\right]$$

$$= E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}+n(\mu-\bar{X})^{2}-2n(\mu-\bar{X})^{2}\right]$$

$$= E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}-n(\mu-\bar{X})^{2}\right]$$

$$= E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}-n(\mu-\bar{X})^{2}\right]$$

$$= E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}-n(\mu-\bar{X})^{2}\right]$$

$$= n\sigma^2 - n\operatorname{Var}(\bar{X}) = n\sigma^2 - n\frac{\sigma^2}{n} = n\sigma^2 - \sigma^2 = (n-1)\sigma^2$$

Therefore $E[S^2] = \sigma^2$

Standard error

Estimating population statistics

A particular outcome

1. Collect a sample, X_1, X_2, \dots, X_n .

$$(72, 85, 79, 79, 91, 68, ..., 71)$$

 $n = 200$

2. Compute sample mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

$$\bar{X} = 83$$

3. Compute sample deviation, $X_i - \bar{X}$.

$$(-11, 2, -4, -4, 8, -15, ..., -12)$$

4. Compute sample variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$.

$$S^2 = 793$$

How close are our estimates \bar{X} and S^2 ?

Sample mean

• $Var(\bar{X})$ is a measure of how close \bar{X} is to μ .

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

How do we estimate $Var(\bar{X})$?

How close is our estimate *X* to μ ?

$$E[\bar{X}] = \mu$$

$$Var(\bar{X}) = \frac{\sigma^2}{n} \begin{vmatrix} v \\ e \end{vmatrix}$$

We want to estimate this

def The standard error of the mean is an estimate of the standard deviation of \bar{X} .

$$SE = \sqrt{\frac{S^2}{n}}$$

Intuition:

- S^2 is an unbiased estimate of σ^2
- S^2/n is an unbiased estimate of $\sigma^2/n = \text{Var}(\bar{X})$
- $\sqrt{S^2/n}$ can estimate $\sqrt{\operatorname{Var}(\bar{X})}$

More info on bias of standard error: wikipedia

Standard error of the mean

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed
$$SE = \sqrt{\frac{S^2}{n}}$$

this is our estimate of how close we are

this is our best estimate of μ

These 2 statistics give a sense of how \bar{X} —that is, the sample mean random variable—behaves.

Standard error of variance?

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed
$$SE = \sqrt{\frac{S^2}{n}}$$

2. Variance of happiness:

this is our best

estimate of σ^2

Claim: The variance of happiness of Bhutan is 793.

Closed Not covered form: in CS109

are we?

Up next: Compute statistics with code!

But how close

Bootstrap: Sample mean

Bootstrap

The Bootstrap:

Probability for Computer Scientists

Computing statistic of sample mean

What is the standard deviation of the sample mean \overline{X} ? (sample size n=200)

Population distribution (we don't have this)

$$\frac{\sigma}{\sqrt{n}} = 1.886$$

1.869

Exact statistic (we don't have this)

Simulated statistic (we don't have this)

Sample distribution (we do have this)

$$SE = \frac{S}{\sqrt{n}} = 1.992$$

???

Estimated statistic, by formula, standard error

Simulated estimated statistic

Note: We don't have access to the population.

But Doris is sharing the exact statistic with cyouran Sahami, and Jerry Cain, CS109, Winter 2024

Bootstrap insight 1: Estimate the true distribution

Bootstrap insight 1: Estimate the true distribution

You can estimate the PMF of the underlying distribution, using your sample.*

*This is just a histogram of your data!h, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Bootstrap insight 2: Simulate a distribution

Approximate the procedure of simulating a distribution of a statistic, e.g., \bar{X} .

Bootstrapped sample means

means = [84.7, 83.9, 80.6, 79.8, 90.3, ..., 85.2]

Estimate the true PMF using our "PMF" (histogram) of our sample.

...generate a whole bunch of sample means of this estimated distribution... ...and compute the standard deviation of this distribution.

Computing statistic of sample mean

What is the standard deviation of the sample mean \bar{X} ? (sample size n=200)

Population distribution (we don't have this)

$$\frac{\sigma}{\sqrt{n}} = 1.886$$

1.869

Exact statistic (we don't have this)

Simulated statistic (we don't have this)

Sample distribution (we do have this)

$$SE = \frac{S}{\sqrt{n}} = 1.992$$

2.003

Estimated statistic, by formula, standard error

Simulated estimated statistic, bootstrapped standard error

Bootstrap algorithm

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample mean on the resample
- 3. You now have a distribution of your sample mean

What is the distribution of your sample mean?

We'll talk about this algorithm in detail with a demo!

Bootstrap algorithm

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **statistic** on the resample
- 3. You now have a distribution of your statistic

What is the distribution of your statistic?

Bootstrapped sample variance

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

What is the distribution of your sample variance?

Even if we don't have a closed form equation, we estimate statistics of sample variance with bootstrapping!

Bootstrap: Sample variance

Bootstrapped sample variance

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

What is the distribution of your sample variance? Goal

- Estimate the **PMF** using the sample
- 2. Repeat 10,000 times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

1. Estimate the PMF using the sample

- 2. Repeat 10,000 times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your sample variance

- 1. Estimate the PMF using the sample

Why are these samples

- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your

This resampled sample is generated with replacement.

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

1. Estimate the PMF using the sample

- 2. Repeat 10,000 times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your sample variance

- 1. Estimate the PMF using the sample
- 2. Repeat 10,000 times:
 - a. Resample **sample.size**() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your sample variance

variances = [827.4, 846.1]

You now have a distribution of your sample variance

variances = [827.4, 846.1, 726.0, ..., 860.7]

3. You now have a distribution of your sample variance

What is the bootstrapped standard error?

np.std(variances)

Bootstrapped standard error: 66.16

- Simulate a distribution of sample variances
- Compute standard deviation

Standard error

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed
$$SE = \sqrt{\frac{S^2}{n}}$$

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793,

with a bootstrapped standard error of 66.16.

this is how close we are, calculated by bootstrapping

 S^2 is our best

estimate of σ^2

Algorithm in practice: Resampling

- 1. Estimate the PMF using the sample
- 2. Repeat 10,000 times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **statistic** on the resample
- 3. You now have a distribution of your statistic

$$P(X = k) = \frac{\text{# values in sample equal to } k}{n}$$

Algorithm in practice: Resampling

```
def resample(sample, n):
    # estimate the PMF using the sample
    # draw n new samples from the PMF
    return np.random.choice(sample, n, replace=True)
```


$$P(X = k) = \frac{\text{# values in sample equal to } k}{n}$$

This resampled sample is generated with replacement.

To the code!

Bootstrap provides a way to calculate probabilities of statistics using code.

Bootstrapping works for any statistic*

*as long as your sample is iid and the underlying distribution does not have a long tail

Google colab notebook <u>link</u>

Bradley Efron

- Invented bootstrapping in 1979
- Still a professor at Stanford
- Won a National Science Medal

Inventor of Efron's dice: 4 dice A, B, C, D where:

$$P(A > B) = P(B > C) = P(C > D) = P(D > A) = \frac{2}{3}$$

Null hypothesis test

Nepal
Happiness
4.45
2.45
6.37
2.07
•••
1.63

Bhutan	
Happiness	
0.91	
0.34	
1.91	
1.61	
•••	
1.08	

$$\bar{X}_1 = 3.1$$

$$\bar{X}_2 = 2.4$$

Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points, and this is statistically significant.

Null hypothesis test

<u>def null hypothesis</u> – Even if there is no pattern (i.e., the two samples are from identical distributions), your claim might have arisen by chance.

<u>def</u> p-value – What is the probability that the observed difference occurs under the null hypothesis?

Example:

- Flip some coin 100 times.
- Flip the same coin another 150 times.
- Compute fraction of heads in both groups.
- There is a possibility we'll see the observed difference in these fractions even if we used the same coin

A significant p-value (< 0.05) means we reject the null

Null hypothesis assumes we use the same coin

Universal sample

(this is what the null hypothesis assumes)

Want p-value: probability $|\bar{X}_1 - \bar{X}_2| = |3.1 - 2.4|$ happens under null hypothesis

1. Create a universal sample using your two samples

i.e., recreate the null hypothesis

- 1. Create a universal sample using your two samples
- 2. Repeat **10,000** times:
 - a. Resample both samples
 - b. Recalculate the mean difference between the resamples
- <u>(mean diffs >= observed diff)</u> 3. p-value = n

Probability that observed difference arose by chance

```
def pvalue boot(bhutan sample, nepal sample):
    N = size of the bhutan sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan resample = draw N resamples from the uni sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
         if diff >= observed diff:
             count += 1
pValue = count / 10,000 Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024
```

1. Create a universal sample using your two samples

```
def pvalue_boot(bhutan_sample, nepal_sample):
   N = size of the bhutan sample
   M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan resample = draw N resamples from the uni sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
        if diff >= observed diff:
            count += 1
```

2. a. Resample both samples

Bootstrap for p-values

```
def pvalue boot(bhutan sample, nepal sample):
    N = size of the bhutan sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
         if diff >= observed diff:
             count += 1
pValue = count / 10,000 Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024
```

2. b. Recalculate the mean difference b/t resamples

```
def pvalue boot(bhutan sample, nepal sample):
    N = size of the bhutan sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan resample = draw N resamples from the uni sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1
```

```
3. p-value = # (mean diffs > observed diff)
                            n
```

```
def pvalue boot(bhutan sample, nepal sample):
   N = size of the bhutan sample
    M = size of the nepal_sample
    observed diff = |mean of bhutan sample - mean of nepal sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan resample = draw N resamples from the uni sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
        if diff >= observed diff:
            count += 1
```

```
def pvalue boot(bhutan sample, nepal sample):
    N = size of the bhutan sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
                                                        with replacement!
    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
        if diff >= observed diff:
             count += 1
pValue = count / 10,000 Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024
```

Bootstrap

Let's try it!

Google colab notebook link

Null hypothesis test

Nepal
Happiness
4.45
2.45
6.37
2.07
1.63

Bhutan
Happiness
0.91
0.34
1.91
1.61
•••
1.08

$$\bar{X}_1 = 3.1$$

$$\bar{X}_2 = 2.4$$

Claim: The happiness of Nepal and Bhutan have a 0.7 difference of means, and this is statistically significant (p < 0.05).