Table of Contents

- 2 iid Random Variables
- 7 Central Limit Theorem
- 19 Sample Statistics
- 24 Exercises

18: Central Limit Theorem

Jerry Cain February 21, 2024

Lecture Discussion on Ed

iid Random Variables

Independence of multiple random variables

Review

We have independence of n discrete random variables $X_1, X_2, ..., X_n$ if for all x_1, x_2, \dots, x_n :

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$

$$p_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n p_{X_i}(x_i)$$

We have independence of n continuous random variables X_1, X_2, \dots, X_n if for all $x_1, x_2, ..., x_n$:

$$P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i)$$

$$f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

i.i.d. random variables

Consider *n* variables $X_1, X_2, ..., X_n$.

 X_1, X_2, \dots, X_n are independent and identically distributed if

- $X_1, X_2, ..., X_n$ are independent, and
- All have the same PMF (if discrete) or PDF (if continuous).

$$\Rightarrow E[X_i] = \mu \text{ for } i = 1, ..., n$$

$$\Rightarrow$$
 Var $(X_i) = \sigma^2$ for $i = 1, ..., n$

i.i.d. Same thing:

iid

Quick check

Are $X_1, X_2, ..., X_n$ iid with the following distributions?

- 1. $X_i \sim \text{Exp}(\lambda)$, X_i independent
- 2. $X_i \sim \text{Exp}(\lambda_i)$, X_i independent
- 3. $X_i \sim \text{Exp}(\lambda)$, $X_1 = X_2 = \cdots = X_n$
- 4. $X_i \sim \text{Bin}(n_i, p)$, X_i independent

Quick check

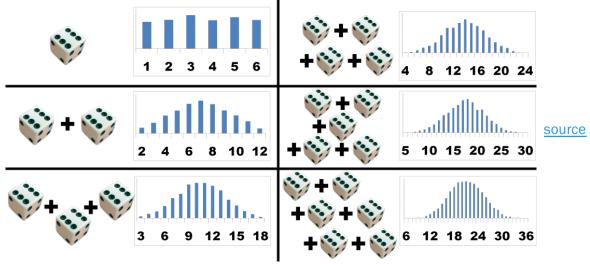
Are $X_1, X_2, ..., X_n$ iid with the following distributions?

1. $X_i \sim \text{Exp}(\lambda)$, X_i independent

2. $X_i \sim \text{Exp}(\lambda_i)$, X_i independent

- \times (unless λ_i equal)
- 3. $X_i \sim \text{Exp}(\lambda), X_1 = X_2 = \dots = X_n$
- \times dependent: $X_1 = X_2 = \cdots = X_n$
- 4. $X_i \sim \text{Bin}(n_i, p)$, X_i independent
- \times (unless n_i equal) Note underlying Bernoulli RVs are iid!

Central Limit Theorem



Central Limit Theorem

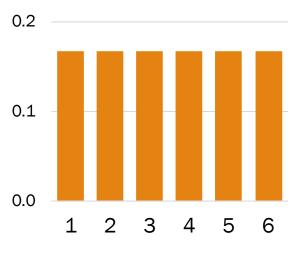
Consider n independent and identically distributed (iid) variables $X_1, X_2, ..., X_n$ with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$.

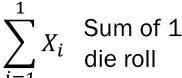
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

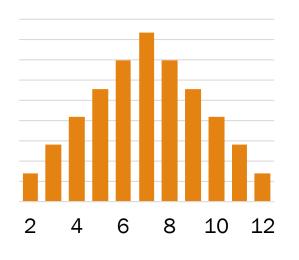
The sum of n iid random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

Sum of dice rolls

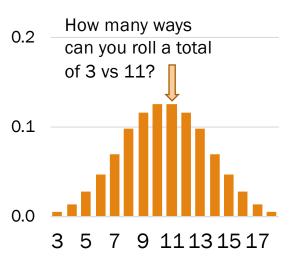
Roll n independent dice. Let X_i be the outcome of roll i. X_i are iid







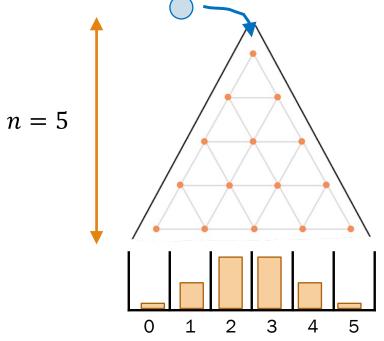
$$\sum_{i=1}^{2} X_i$$
 Sum of 2 dice rolls



$$\sum_{i=1}^{3} X_i$$
 Sum of 3 dice rolls

$$\sum_{i=1}^{n} X_{i} \sim \mathcal{N}(n\mu, n\sigma^{2})$$

The sum of n iid random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.



Galton Board, by Sir Francis Galton (1822-1911)

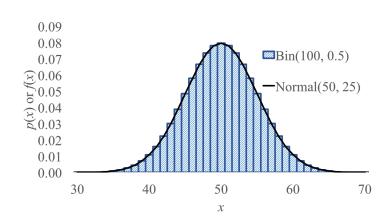


Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Stanford University 10

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n iid random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.



Normal approximation of Binomial Sum of iid Bernoulli RVs ≈ Normal

Proof:

Let $X_i \sim \text{Ber}(p)$ for i = 1, ..., n, where X_i are iid $E[X_i] = p$, $Var(X_i) = p(1-p)$

$$X = \sum_{i=1}^{n} X_i \qquad (X \sim \text{Bin}(n, p))$$

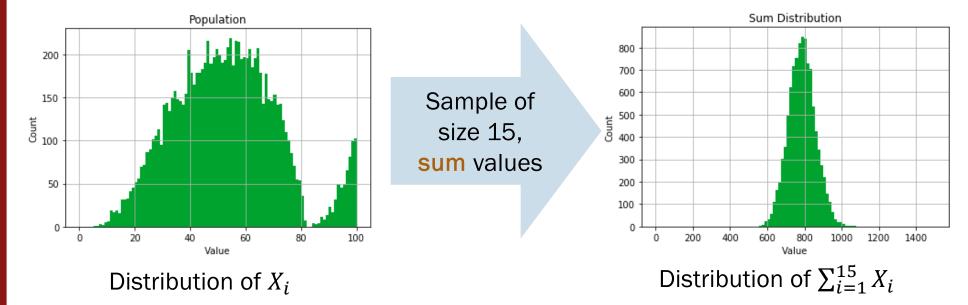
$$X \sim \mathcal{N}(n\mu, n\sigma^2)$$
 (CLT, as $n \to \infty$)

$$X \sim \mathcal{N}(np, np(1-p))$$

(substitute mean, variance of Bernoulli)

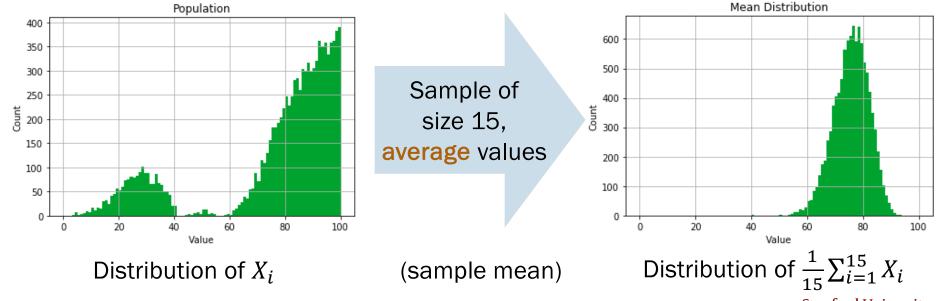
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n iid random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.



$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n iid random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.



Proof of CLT

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n iid random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

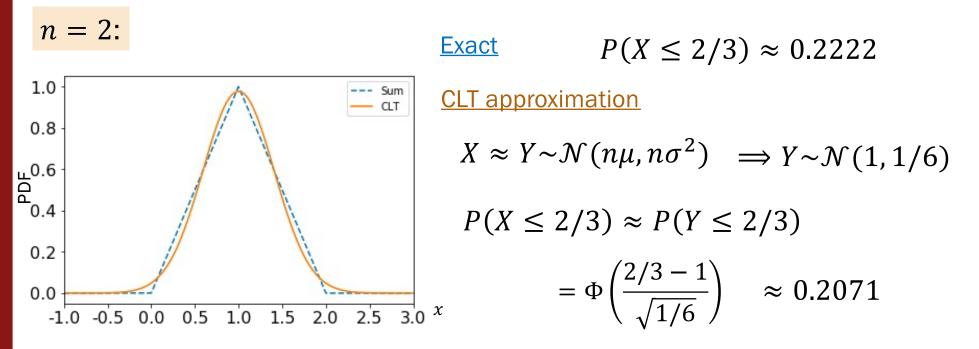
Proof:

- The Fourier Transform of a PDF is its characteristic function.
- Take the characteristic function of the probability mass of the sample distance from the mean, divided by standard deviation
- Show that this approaches an $f(x) = e^{-\frac{x^2}{2}}$ exponential function in the limit as $n \to \infty$:
- This function is in turn the characteristic function of the Standard Normal, $Z \sim \mathcal{N}(0,1)$.

(this proof is beyond the scope of CS109)

 $\mu = E[X_i] = 1/2$ Let $X = \sum_{i=1}^{n} X_i$ be sum of iid RVs, where $X_i \sim \text{Uni}(0,1)$. $\sigma^2 = Var(X_i) = 1/12$

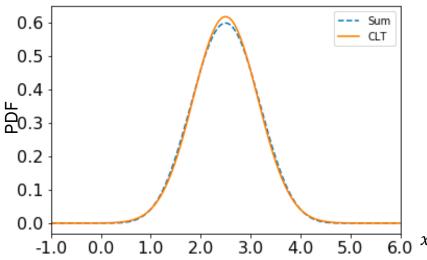
For different n, how close is the CLT approximation of $P(X \le n/3)$?



 $\mu = E[X_i] = 1/2$ Let $X = \sum_{i=1}^{n} X_i$ be sum of iid RVs, where $X_i \sim \text{Uni}(0,1)$. $\sigma^2 = Var(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \le n/3)$?

n = 5:



Exact

$$P(X \le 5/3) \approx 0.1017$$

CLT approximation

$$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \implies Y \sim \mathcal{N}(5/2, 5/12)$$

$$P(X \le 5/3) \approx P(Y \le 5/3)$$

$$= \Phi\left(\frac{5/3 - 5/2}{\sqrt{5/12}}\right) \approx 0.0984$$

 $\mu = E[X_i] = 1/2$ $\sigma^2 = Var(X_i) = 1/12$ Let $X = \sum_{i=1}^{n} X_i$ be sum of iid RVs, where $X_i \sim \text{Uni}(0,1)$.

For different n, how close is the CLT approximation of $P(X \le n/3)$?

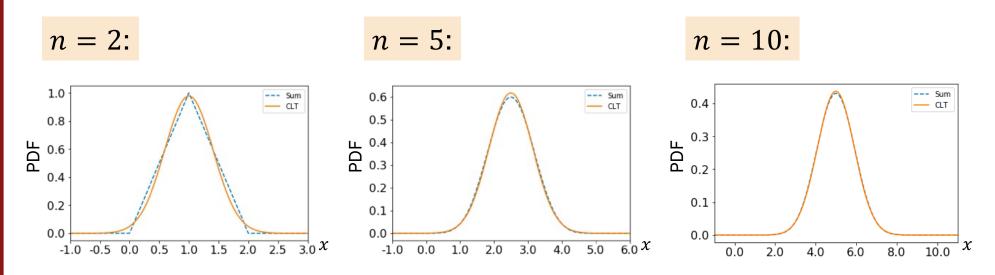
n = 10: Exact $P(X \le 10/3) \approx 0.0337$ Sum **CLT** approximation 0.4 $X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \implies Y \sim \mathcal{N}(5, 5/6)$ 0.3 HQ0.2 $P(X \le 10/3) \approx P(Y \le 10/3)$ 0.1 $=\Phi\left(\frac{10/3-5}{\sqrt{5/6}}\right) \approx 0.0339$ 0.0 χ 8.0 2.0 4.0 6.0 10.0 0.0

Let $X = \sum_{i=1}^{n} X_i$ be sum of iid RVs, where $X_i \sim \text{Uni}(0,1)$.

$$\mu = E[X_i] = 1/2$$

 $\sigma^2 = Var(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \le n/3)$?



Most books will tell you that CLT holds if $n \geq 30$, but it can hold for smaller n depending on the distribution of your iid X_i 's.

Sample Statistics

What about other functions?

Let $X_1, X_2, ..., X_n$ be iid, where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$
 Sum of iid RVs

Average of iid RVs (sample mean)

Max of iid RVs

What about other functions?

Let $X_1, X_2, ..., X_n$ be iid, where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$
 Sum of iid RVs

Average of iid RVs (sample mean)

Max of iid RVs

Distribution of sample mean

Let
$$X_1, X_2, ..., X_n$$
 be iid, where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

Define:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (sample mean) $Y = \sum_{i=1}^{n} X_i$ (sum)

$$Y \sim \mathcal{N}(n\mu, n\sigma^2)$$
 (CLT, as $n \to \infty$)

$$\bar{X} = \frac{1}{n}Y$$

$$\bar{X} \sim \mathcal{N}(?,?)$$

(Linear transform of a Normal)

$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

The average of iid random variables (i.e., sample mean) is normally distributed with mean μ and variance σ^2/n .

Demo: http://onlinestatbook.com/stat_sim/sampling_dist/

What about other functions?

Let $X_1, X_2, ..., X_n$ be iid, where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$
 Sum of iid RVs

$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

Average of iid RVs (sample mean)

Gumbel

Max of iid RVs

(see Fisher-Tippett Gnedenko Theorem)

As
$$n \to \infty$$
:
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

You will roll 10 6-sided dice $(X_1, X_2, \dots, X_{10})$.

- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \le 25$ or $X \ge 45$.

To the demo!

As
$$n \to \infty$$
: $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.

$$E[X_i] = 3.5,$$

 $Var(X_i) = 35/12$

Want: $P(X \le 25 \text{ or } X \ge 45)$

Approximate:

As
$$n \to \infty$$
: $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.

$$E[X_i] = 3.5,$$

 $Var(X_i) = 35/12$

Want:
$$P(X \le 25 \text{ or } X \ge 45)$$

Approximate:

$$X \approx Y \sim \mathcal{N}(10(3.5), 10(35/12))$$

2. Solve.

$$P(Y \le 25.5) + P(Y \ge 44.5)$$

or

$$1 - P(25.5 \le Y \le 44.5)$$

As
$$n \to \infty$$
: $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if X < 25 or X > 45.

And now the truth (according to the CLT)...

1. Define RVs and state goal.

$$E[X_i] = 3.5,$$

 $Var(X_i) = 35/12$

 $E[X_i] = 3.5,$ Want: $P(X \le 25 \text{ or } X \ge 45)$

Approximate:

 $X \approx Y \sim \mathcal{N}(10(3.5), 10(35/12))$

$$P(Y \le 25.5) + P(Y \ge 44.5) = \Phi\left(\frac{25.5 - 35}{\sqrt{10(35/12)}}\right) + \left(1 - \Phi\left(\frac{44.5 - 35}{\sqrt{10(35/12)}}\right)\right)$$

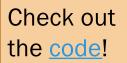
$$\approx \Phi(-1.76) + (1 - \Phi(1.76)) \approx (1 - 0.9608) + (1 - 0.9608) = 0.0786$$

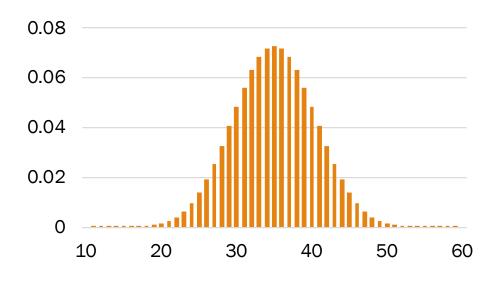
As
$$n \to \infty$$
:
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...





$$\approx P(Y \le 25.5) + P(Y \ge 44.5)$$

 ≈ 0.0786

(exact, by computer)

$$P(X \le 25 \text{ or } X \ge 45) = 0.0780$$

(sampling via computer)

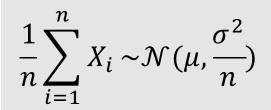
$$P(X \le 25 \text{ or } X \ge 45) \approx 0.0776$$

Summary: Working with the CLT

Let $X_1, X_2, ..., X_n$ iid, where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

Sum of iid RVs



Average of iid RVs (sample mean)

If X_i is discrete:

Use the continuity correction on Y!

Crashing website

- Let X = number of visitors to a website, where $X \sim Poi(100)$.
- The server crashes if there are ≥ 120 requests/minute.

What is P(server crashes in next minute)?

Strategy: Poisson (exact)
$$P(X \ge 120) = \sum_{k=120}^{\infty} \frac{(100)^k e^{-100}}{k!} \approx 0.0282$$

Strategy:

CLT (approx.)

How would we involve CLT here?

(Hint: Is there a way to represent X as a sum of iid RVs?)

Crashing website

- Let X = number of visitors to a website, where $X \sim Poi(100)$.
- The server crashes if there are ≥ 120 requests/minute.

What is P(server crashes in next minute)?

Strategy: Poisson (exact)
$$P(X \ge 120) = \sum_{k=120}^{\infty} \frac{(100)^k e^{-100}}{k!} \approx 0.0282$$

Strategy: State CLT approx. Poi
$$(100) \sim \sum_{i=1}^{n} \text{Poi}(100/n)$$
 $X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2)$ (approx.) goal

 $P(X \ge 120) \approx P(Y \ge 119.5)$

Solve
$$P(Y \ge 119.5) = 1 - \Phi\left(\frac{119.5 - 100}{\sqrt{100}}\right) = 1 - \Phi(1.95) \approx 0.0256$$

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

Suppose variance of runtime is $\sigma^2 = 4 \sec^2$. Run algorithm repeatedly (iid trials):

- X_i = runtime of i-th run (for $1 \le i \le n$)
- Estimate runtime to be **average** of n trials, \bar{X}

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

(CLT)
$$\bar{X} \sim \mathcal{N}\left(t, \frac{4}{n}\right)$$

Want:
$$P(t - 0.5 \le \overline{X} \le t + 0.5) = 0.95$$

$$\bar{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$$

$$P(-0.5 \le \bar{X} - t \le 0.5) = 0.95$$

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

 Suppose variance of runtime is $\sigma^2 = 4 \sec^2$. Run algorithm repeatedly (iid trials):

- X_i = runtime of i-th run (for $1 \le i \le n$)
- Estimate runtime to be **average** of n trials, X

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

$$\bar{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$$

$$0.95 = P(-0.5 \le \bar{X} - t \le 0.5)$$

$$0.95 = F_{\bar{X}-t}(0.5) - F_{\bar{X}-t}(-0.5)$$

$$= \Phi\left(\frac{0.5 - 0}{\sqrt{4/n}}\right) - \Phi\left(\frac{-0.5 - 0}{\sqrt{4/n}}\right) = 2\Phi\left(\frac{\sqrt{n}}{4}\right) - 1$$

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

 Suppose variance of runtime is $\sigma^2 = 4 \sec^2$. Run algorithm repeatedly (iid trials):

- X_i = runtime of *i*-th run (for $1 \le i \le n$)
- Estimate runtime to be **average** of n trials, X

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

$$\bar{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$$

$$0.95 = P(-0.5 \le \bar{X} - t \le 0.5) \quad 0.975 = \Phi(\sqrt{n}/4)$$

$$0.95 = F_{\bar{X}-t}(0.5) - F_{\bar{X}-t}(-0.5)$$

$$= \Phi\left(\frac{0.5 - 0}{\sqrt{4/n}}\right) - \Phi\left(\frac{-0.5 - 0}{\sqrt{4/n}}\right) = 2\Phi\left(\frac{\sqrt{n}}{4}\right) - 1$$

$$0.975 = \Phi(\sqrt{n}/4)$$

 $\sqrt{n}/4 = \Phi^{-1}(0.975) \approx 1.96 \qquad n \approx 62$

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

Suppose variance of runtime is $\sigma^2 = 4 \sec^2$. Run algorithm repeatedly (iid trials):

- X_i = runtime of i-th run (for $1 \le i \le n$)
- Estimate runtime to be **average** of n trials, \bar{X}

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

 $n \approx 62$

Interpret: As we increase n (the size of our sample):

- The variance of our sample mean, σ^2/n decreases
- The probability that our sample mean \bar{X} is close to the true mean μ increases

Next time

Central Limit Theorem:

- Sample mean $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$
- If we know μ and σ^2 , we can compute probabilities on sample mean \bar{X} of a given sample size n

In real life:

- Yes, the CLT still holds. It always holds!
- But we often don't know μ or σ^2 of our original distribution
- However, we can collect data (a sample of size n)
- How can we estimate the values μ and σ^2 from our sample? And how reliable are those estimates? ...until next time!