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Independence	of	multiple	random	variables
We have independence of 𝑛 discrete random variables 𝑋!, 𝑋", … , 𝑋# if

 for all 𝑥!, 𝑥", … , 𝑥#:

We have independence of 𝑛 continuous random variables 𝑋!, 𝑋", … , 𝑋# if
 for all 𝑥!, 𝑥", … , 𝑥#:
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Review

𝑝!! ,!" ,…,!# 𝑥$, 𝑥%, … , 𝑥& =&
'($

&

𝑝!$ 𝑥'

𝑃 𝑋$ = 𝑥$, 𝑋% = 𝑥%, … , 𝑋& = 𝑥& =&
'($

&

𝑃 𝑋' = 𝑥'

𝑃 𝑋$ ≤ 𝑥$, 𝑋% ≤ 𝑥%, … , 𝑋& ≤ 𝑥& =&
'($

&

𝑃 𝑋' ≤ 𝑥'

𝑓!! ,!" ,…,!# 𝑥$, 𝑥%, … , 𝑥& =&
'($

&

𝑓!$ 𝑥'
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i.i.d.	random	variables
Consider 𝑛 variables 𝑋!, 𝑋", … , 𝑋#.
𝑋!, 𝑋", … , 𝑋# are independent and identically distributed if
• 𝑋!, 𝑋", … , 𝑋# are independent, and
• All have the same PMF (if discrete) or PDF (if continuous).
⇒ 𝐸 𝑋$ = 𝜇 for 𝑖 = 1, … , 𝑛
⇒ Var 𝑋$ = 𝜎" for 𝑖 = 1, … , 𝑛
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Same thing: i.i.d. iid IID
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Quick	check
Are 𝑋!, 𝑋", … , 𝑋# iid with the following distributions?

1.  𝑋$~Exp 𝜆 , 𝑋$ independent

2.  𝑋$~Exp 𝜆$ , 𝑋$ independent

3.  𝑋$~Exp 𝜆 , 𝑋! = 𝑋" = ⋯ = 𝑋#

4.  𝑋$~Bin 𝑛$ , 𝑝 , 𝑋$ independent

5
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Quick	check
Are 𝑋!, 𝑋", … , 𝑋# iid with the following distributions?

1.  𝑋$~Exp 𝜆 , 𝑋$ independent

2.  𝑋$~Exp 𝜆$ , 𝑋$ independent

3.  𝑋$~Exp 𝜆 , 𝑋! = 𝑋" = ⋯ = 𝑋#

4.  𝑋$~Bin 𝑛$ , 𝑝 , 𝑋$ independent

6

✅

❌ (unless 𝜆' equal)

❌ dependent: 𝑋$ = 𝑋% = ⋯ = 𝑋&

❌ (unless 𝑛' equal)
Note underlying Bernoulli RVs are iid!
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Central	Limit	Theorem
Consider 𝑛 independent and identically distributed (iid) variables 𝑋!, 𝑋", … , 𝑋# 
with 𝐸 𝑋$ = 𝜇 and Var 𝑋$ = 𝜎".

!
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)

The sum of 𝑛 iid random variables is normally distributed with mean 𝑛𝜇 
and variance 𝑛𝜎".
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As 𝑛 → ∞



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Sum	of	dice	rolls

Roll 𝑛 independent dice. Let 𝑋$ be the outcome of roll 𝑖. 𝑋% are iid

9

0
'($

$

𝑋'
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0.1

0.2
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0
'($

%

𝑋' 0
'($

)

𝑋'
Sum of 1
die roll

Sum of 2
dice rolls

Sum of 3
dice rolls

How many ways
can you roll a total
of 3 vs 11?
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CLT	explains	a	lot

10

0
'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

0 1 2 3 4 5

𝑛 = 5

Galton Board, by Sir Francis Galton
(1822-1911)

As 𝑛 → ∞
The sum of 𝑛 iid random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.
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CLT	explains	a	lot

11

0
'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

Normal approximation of Binomial
Sum of iid Bernoulli RVs ≈ Normal

𝑋~Bin(𝑛, 𝑝)𝑋 =0
'($

&

𝑋'

𝑋~𝒩 𝑛𝑝, 𝑛𝑝(1 − 𝑝)

Proof:

𝑋~𝒩 𝑛𝜇, 𝑛𝜎" CLT, as	𝑛 → ∞  

(substitute mean,
variance of Bernoulli) 

Let 𝑋'~Ber(𝑝) for 𝑖 = 1,… , 𝑛, where 𝑋' are iid
𝐸 𝑋' = 𝑝, 	Var 𝑋' = 𝑝(1 − 𝑝) 

As 𝑛 → ∞
The sum of 𝑛 iid random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.
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CLT	explains	a	lot

12

0
'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

Sample of
size 15,

sum values

Distribution of 𝑋' Distribution of ∑'($$* 𝑋'

As 𝑛 → ∞
The sum of 𝑛 iid random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.
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CLT	explains	a	lot

13

0
'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

Sample of
size 15,

average values

(sample mean) Distribution of $
$*
∑'($
$* 𝑋'Distribution of 𝑋'

As 𝑛 → ∞
The sum of 𝑛 iid random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.
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Proof	of	CLT

14

The sum of 𝑛 iid random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.0

'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

• The Fourier Transform of a PDF is its characteristic function.
• Take the characteristic function of the probability mass of the sample 

distance from the mean, divided by standard deviation
• Show that this approaches an

exponential function in the limit as 𝑛 → ∞: 
• This function is in turn the characteristic function of the Standard 

Normal, 𝑍~ 𝒩(0,1).

Proof:

𝑓 𝑥 = 𝑒0
1!
"

(this proof is beyond the scope of CS109)

As 𝑛 → ∞
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Sum	of	𝑛	independent	Uniform	RVs
Let 𝑋 = ∑$2!# 𝑋$ be sum of iid RVs, where 𝑋$~Uni 0,1 .

For different 𝑛, how close is the CLT approximation of 𝑃 𝑋 ≤ 𝑛/3 ?

15

𝑛 = 2: 𝑃 𝑋 ≤ 2/3 ≈ 0.2222

𝑋 ≈ 𝑌~𝒩(𝑛𝜇, 𝑛𝜎")

Exact

𝑥

PD
F

CLT approximation

𝜇 = 𝐸 𝑋' = 1/2	
𝜎% = Var 𝑋' = 1/12 

⟹ 𝑌~𝒩(1, 1/6)

𝑃 𝑋 ≤ 2/3 ≈ 𝑃 𝑌 ≤ 2/3

= Φ
2/3 − 1
1/6

≈ 0.2071
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Sum	of	𝑛	independent	Uniform	RVs
Let 𝑋 = ∑$2!# 𝑋$ be sum of iid RVs, where 𝑋$~Uni 0,1 .

For different 𝑛, how close is the CLT approximation of 𝑃 𝑋 ≤ 𝑛/3 ?

16

𝑛 = 5: 𝑃 𝑋 ≤ 5/3 ≈ 0.1017

𝑋 ≈ 𝑌~𝒩(𝑛𝜇, 𝑛𝜎")

Exact

𝑥

PD
F

CLT approximation

𝜇 = 𝐸 𝑋' = 1/2	
𝜎% = Var 𝑋' = 1/12 

⟹ 𝑌~𝒩(5/2, 5/12)

𝑃 𝑋 ≤ 5/3 ≈ 𝑃 𝑌 ≤ 5/3

= Φ
5/3 − 5/2

5/12
≈ 0.0984
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Sum	of	𝑛	independent	Uniform	RVs
Let 𝑋 = ∑$2!# 𝑋$ be sum of iid RVs, where 𝑋$~Uni 0,1 .

For different 𝑛, how close is the CLT approximation of 𝑃 𝑋 ≤ 𝑛/3 ?

17

𝑛 = 10: 𝑃 𝑋 ≤ 10/3 ≈ 0.0337

𝑋 ≈ 𝑌~𝒩(𝑛𝜇, 𝑛𝜎")

Exact

𝑥

PD
F

CLT approximation

𝜇 = 𝐸 𝑋' = 1/2	
𝜎% = Var 𝑋' = 1/12 

⟹ 𝑌~𝒩(5, 5/6)

𝑃 𝑋 ≤ 10/3 ≈ 𝑃 𝑌 ≤ 10/3

= Φ
10/3 − 5

5/6
≈ 0.0339
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Sum	of	𝑛	independent	Uniform	RVs
Let 𝑋 = ∑$2!# 𝑋$ be sum of iid RVs, where 𝑋$~Uni 0,1 .

For different 𝑛, how close is the CLT approximation of 𝑃 𝑋 ≤ 𝑛/3 ?

18

𝑛 = 10:

𝑥

PD
F

𝜇 = 𝐸 𝑋' = 1/2	
𝜎% = Var 𝑋' = 1/12 

Most books will tell you that CLT holds if 𝑛 ≥ 30, but it can hold 
for smaller 𝑛 depending on the distribution of your iid 𝑋'’s.

𝑛 = 5:

𝑥

PD
F

𝑛 = 2:

𝑥

PD
F
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What	about	other	functions?

20

K
$2!

#

𝑋$ ~𝒩(𝑛𝜇, 𝑛𝜎")

?

Sum of iid RVs

Average of iid RVs

Max of iid RVs

(sample mean)
?

Let 𝑋!, 𝑋", … , 𝑋# be iid, where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:
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What	about	other	functions?

21

K
$2!

#

𝑋$ ~𝒩(𝑛𝜇, 𝑛𝜎")

?

Average of iid RVs

Max of iid RVs

(sample mean)
?

Let 𝑋!, 𝑋", … , 𝑋# be iid, where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:

Sum of iid RVs
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Distribution	of	sample	mean
Let 𝑋!, 𝑋", … , 𝑋# be iid, where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:

Define:

𝑌~𝒩 𝑛𝜇, 𝑛𝜎"  
L𝑋 = !

#
𝑌 

L𝑋~𝒩(	?	, ? ) 
  

22

3𝑋 =
1
𝑛6
!"#

$

𝑋! (sample mean) 𝑌 =6
!"#

$

𝑋! (sum)

(Linear transform of a Normal)

(CLT, as 𝑛 → ∞)

22

The average of iid random variables (i.e., 
sample mean) is normally distributed with 
mean 𝜇 and variance 𝜎%/𝑛.

1
𝑛
0
'($

&

𝑋' ~𝒩(𝜇,
𝜎%

𝑛
)

Demo: http://onlinestatbook.com/stat_sim/sampling_dist/

http://onlinestatbook.com/stat_sim/sampling_dist/
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?

What	about	other	functions?

23

K
$2!

#

𝑋$ ~𝒩(𝑛𝜇, 𝑛𝜎")

Average of iid RVs

Max of iid RVs

(sample mean)

Let 𝑋!, 𝑋", … , 𝑋# be iid, where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:

Sum of iid RVs

1
𝑛
K
$2!

#

𝑋$ ~𝒩(𝜇,
𝜎"

𝑛
)

Gumbel
(see Fisher-Tippett Gnedenko Theorem)
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Dice	game
You will roll 10 6-sided dice 𝑋!,	𝑋", … , 𝑋!8 .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+ 𝑋!8, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

25

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

To the demo!

https://drive.google.com/file/d/1bKQvpgTMF0zJRVl63XhBb_vXncykxwC0/view?usp=sharing
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Dice	game
You will roll 10 6-sided dice 𝑋!,	𝑋", … , 𝑋!% .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+𝑋!%, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

26

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

1. Define RVs and
state goal.

2. Solve.

𝐸 𝑋' = 3.5,	
Var 𝑋' = 35/12 Approximate:

𝑃 𝑋 ≤ 25	or	𝑋 ≥ 45Want:

?
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Dice	game
You will roll 10 6-sided dice 𝑋!,	𝑋", … , 𝑋!% .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+𝑋!%, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

27

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

1. Define RVs and
state goal.

2. Solve.

𝐸 𝑋' = 3.5,	
Var 𝑋' = 35/12 

𝑋 ≈ 𝑌~𝒩(10 3.5 , 10 35/12 )
Approximate:

𝑃 𝑋 ≤ 25	or	𝑋 ≥ 45Want:

𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5 1 − 𝑃 25.5 ≤ 𝑌 ≤ 44.5or

 continuity
  correction⚠
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Dice	game
You will roll 10 6-sided dice 𝑋!,	𝑋", … , 𝑋!% .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+𝑋!%, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

28

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

1. Define RVs and
state goal.

2. Solve.

𝐸 𝑋' = 3.5,	
Var 𝑋' = 35/12 

𝑋 ≈ 𝑌~𝒩(10 3.5 , 10 35/12 )
Approximate:

𝑃 𝑋 ≤ 25	or	𝑋 ≥ 45Want:

𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5 = Φ
25.5 − 35
10 35/12

+ 1 − Φ
44.5 − 35
10 35/12

	

≈ Φ −1.76 + 1 − Φ 1.76  ≈ 1 − 0.9608 + 1 − 0.9608  = 0.0786
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Dice	game
You will roll 10 6-sided dice 𝑋!,	𝑋", … , 𝑋!8 .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+ 𝑋!8, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

29

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

0

0.02

0.04

0.06

0.08

10 20 30 40 50 60

≈ 𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5
≈ 0.0786

(by CLT)

𝑃 𝑋 ≤ 25	or	𝑋 ≥ 45 = 0.0780
(exact, by computer)

Check out 
the code!

𝑃 𝑋 ≤ 25	or	𝑋 ≥ 45 ≈ 0.0776
(sampling via computer)

https://colab.research.google.com/drive/1HCECtQ0ShGjkNuFt_ZDvmHtGudeh12yE?usp=sharing
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Summary:	Working	with	the	CLT

30

⚠
 If 𝑋' is discrete:

Use the continuity 
correction on 𝑌!

K
$2!

#

𝑋$ ~𝒩(𝑛𝜇, 𝑛𝜎")

1
𝑛
K
$2!

#

𝑋$ ~𝒩(𝜇,
𝜎"

𝑛
)

Sum of iid RVs

Average of iid RVs
(sample mean)

Let 𝑋!, 𝑋", … , 𝑋# iid, where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:
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Crashing	website
• Let 𝑋 = number of visitors to a website, where 𝑋~Poi 100 .
• The server crashes if there are ≥ 120 requests/minute.

What is 𝑃 server crashes in next minute ?

31

Strategy: 
Poisson (exact) 𝑃 𝑋 ≥ 120 	 = 6

%"#&'

(
100 %𝑒)#''

𝑘! ≈ 0.0282 

Strategy:
CLT
(approx.)

How would we involve CLT here?
(Hint: Is there a way to represent 𝑋 as a sum of iid RVs?)
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Crashing	website
• Let 𝑋 = number of visitors to a website, where 𝑋~Poi 100 .
• The server crashes if there are ≥ 120 requests/minute.

What is 𝑃 server crashes in next minute ?

32

Strategy: 
Poisson (exact) 𝑃 𝑋 ≥ 120 	 = 6

%"#&'

(
100 %𝑒)#''

𝑘! ≈ 0.0282 

Strategy:
CLT
(approx.)

State 
approx. 
goal

Poi 100 ~0
'($

&

Poi 100/𝑛 𝑋 ≈ 𝑌~𝒩(𝑛𝜇, 𝑛𝜎")

𝑃 𝑋 ≥ 120 ≈ 𝑃 𝑌 ≥ 119.5

Solve 𝑃 𝑌 ≥ 119.5 = 1 − Φ
119.5 − 100

100
= 1 − Φ 1.95 ≈ 0.0256
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As 𝑛 → ∞:Clock	running	time

33

L𝑋~𝒩 𝑡,
4
𝑛

𝑃 𝑡 − 0.5 ≤ L𝑋 ≤ 𝑡 + 0.5 = 0.95 Want:

𝑃 −0.5 ≤ L𝑋 − 𝑡 ≤ 0.5 = 0.95 L𝑋 − 𝑡~𝒩 0,
4
𝑛

(linear 
transform of 

a normal)

(CLT)

Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎" = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?

Run algorithm repeatedly (iid trials):
• 𝑋' = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, M𝑋

1. Define RVs and
state goal.

2. Solve.

1
𝑛
,
!"#

$

𝑋! ~𝒩(𝜇,
𝜎%

𝑛
)
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Clock	running	time
Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎" = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?

34

Run algorithm repeatedly (iid trials):
• 𝑋' = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, M𝑋

1. Define RVs and
state goal.

0.95 = 
    𝑃 −0.5 ≤ L𝑋 − 𝑡 ≤ 0.5  

L𝑋 − 𝑡~𝒩 0,
4
𝑛

2. Solve.

0.95 = 𝐹 3=0> 0.5 − 𝐹 3=0> −0.5

= Φ
0.5 − 0
4/𝑛

− Φ
−0.5 − 0

4/𝑛
= 2Φ

𝑛
4

− 1

As 𝑛 → ∞:
1
𝑛
,
!"#

$

𝑋! ~𝒩(𝜇,
𝜎%

𝑛
)
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Clock	running	time
Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎" = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?
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Run algorithm repeatedly (iid trials):
• 𝑋' = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, M𝑋

1. Define RVs and
state goal.

0.95 = 
    𝑃 −0.5 ≤ L𝑋 − 𝑡 ≤ 0.5  

L𝑋 − 𝑡~𝒩 0,
4
𝑛

2. Solve.

0.95 = 𝐹 3=0> 0.5 − 𝐹 3=0> −0.5

= Φ
0.5 − 0
4/𝑛

− Φ
−0.5 − 0

4/𝑛
= 2Φ

𝑛
4

− 1

0.975 = Φ 𝑛/4
𝑛/4 = Φ0! 0.975 ≈ 1.96 𝑛 ≈ 62

As 𝑛 → ∞:
1
𝑛
,
!"#

$

𝑋! ~𝒩(𝜇,
𝜎%

𝑛
)
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Clock	running	time
Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎" = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?
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Run algorithm repeatedly (iid trials):
• 𝑋' = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, M𝑋

𝑛 ≈ 62

As 𝑛 → ∞:
1
𝑛
,
!"#

$

𝑋! ~𝒩(𝜇,
𝜎%

𝑛
)

Interpret: As we increase 𝑛 (the size of our sample):
• The variance of our sample mean, 𝜎"/𝑛 decreases
• The probability that our sample mean L𝑋	is close

to the true mean 𝜇 increases
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Next	time
Central Limit Theorem:
• Sample mean L𝑋	~𝒩 𝜇, 𝜎"/𝑛
• If we know 𝜇 and 𝜎", we can compute probabilities on

sample mean L𝑋	of a given sample size 𝑛

In real life:
• Yes, the CLT still holds. It always holds!
• But we often don’t know 𝜇 or 𝜎" of our original distribution
• However, we can collect data (a sample of size 𝑛)
• How can we estimate the values 𝜇 and 𝜎" from our sample? And how 

reliable are those estimates?

37

…until next time!


