18: Central Limit
 Theorem

Jerry Cain
February 21, 2024

Lecture Discussion on Ed

iid Random Variables

Independence of multiple random variables

We have independence of n discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ if for all $x_{1}, x_{2}, \ldots, x_{n}$:

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i}\right) \\
& \quad p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p_{X_{i}}\left(x_{i}\right)
\end{aligned}
$$

We have independence of n continuous random variables $X_{1}, X_{2}, \ldots, X_{n}$ if for all $x_{1}, x_{2}, \ldots, x_{n}$:

$$
P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq x_{i}\right) . \quad f_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)
$$

i.i.d. random variables

Consider n variables $X_{1}, X_{2}, \ldots, X_{n}$.
$X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed if

- $X_{1}, X_{2}, \ldots, X_{n}$ are independent, and
- All have the same PMF (if discrete) or PDF (if continuous).
$\Rightarrow E\left[X_{i}\right]=\mu$ for $i=1, \ldots, n$
$\Rightarrow \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for $i=1, \ldots, n$
Same thing: i.i.d.
iid
IID

Quick check

Are $X_{1}, X_{2}, \ldots, X_{n}$ iid with the following distributions?

1. $X_{i} \sim \operatorname{Exp}(\lambda), X_{i}$ independent
2. $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right), X_{i}$ independent
3. $X_{i} \sim \operatorname{Exp}(\lambda), X_{1}=X_{2}=\cdots=X_{n}$
4. $X_{i} \sim \operatorname{Bin}\left(n_{i}, p\right), X_{i}$ independent

Quick check

Are $X_{1}, X_{2}, \ldots, X_{n}$ iid with the following distributions?

1. $X_{i} \sim \operatorname{Exp}(\lambda), X_{i}$ independent
2. $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right), X_{i}$ independent
3. $X_{i} \sim \operatorname{Exp}(\lambda), X_{1}=X_{2}=\cdots=X_{n}$
4. $X_{i} \sim \operatorname{Bin}\left(n_{i}, p\right), X_{i}$ independent

X (unless λ_{i} equal)
\mathbf{X} dependent: $X_{1}=X_{2}=\cdots=X_{n}$
X (unless n_{i} equal)
Note underlying Bernoulli RVs are iid!

Central Limit Theorem

Central Limit Theorem

Consider n independent and identically distributed (iid) variables $X_{1}, X_{2}, \ldots, X_{n}$ with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$.

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

The sum of n iid random variables is normally distributed with mean $n \mu$ and variance $n \sigma^{2}$.

Sum of dice rolls

Roll n independent dice. Let X_{i} be the outcome of roll $i . X_{\mathrm{i}}$ are iid

CLT explains a lot

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

The sum of n iid random variables is normally distributed with mean $n \mu$ and variance $n \sigma^{2}$.

Stanford University 10

CLT explains a lot

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

The sum of n iid random variables is normally distributed with mean $n \mu$ and variance $n \sigma^{2}$.

Normal approximation of Binomial Sum of iid Bernoulli RVs \approx Normal

Proof:
Let $X_{i} \sim \operatorname{Ber}(p)$ for $i=1, \ldots, n$, where X_{i} are iid $E\left[X_{i}\right]=p, \operatorname{Var}\left(X_{i}\right)=p(1-p)$
$X=\sum_{i=1}^{n} X_{i}$
$X \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)$
$X \sim \mathcal{N}(n p, n p(1-p))$
(substitute mean, variance of Bernoulli)

CLT explains a lot

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

The sum of n iid random variables is normally distributed with mean $n \mu$ and variance $n \sigma^{2}$.

Distribution of X_{i}

Distribution of $\sum_{i=1}^{15} X_{i}$

CLT explains a lot

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

The sum of n iid random variables is normally distributed with mean $n \mu$ and variance $n \sigma^{2}$.

Distribution of X_{i}

Sample of size 15 , average values
(sample mean)

Distribution of $\frac{1}{15} \sum_{i=1}^{15} X_{i}$

Proof of CLT

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

The sum of n iid random variables is normally distributed with mean $n \mu$ and variance $n \sigma^{2}$.

Proof:

- The Fourier Transform of a PDF is its characteristic function.
- Take the characteristic function of the probability mass of the sample distance from the mean, divided by standard deviation
- Show that this approaches an exponential function in the limit as $n \rightarrow \infty: \quad f(x)=e^{-\frac{x^{2}}{2}}$
- This function is in turn the characteristic function of the Standard Normal, $Z \sim \mathcal{N}(0,1)$.
(this proof is beyond the scope of CS109)

Sum of n independent Uniform RVs

Let $X=\sum_{i=1}^{n} X_{i}$ be sum of iid RVs, where $X_{i} \sim \operatorname{Uni}(0,1) . \quad \mu=E\left[X_{i}\right]=1 / 2$

$$
\sigma^{2}=\operatorname{Var}\left(X_{i}\right)=1 / 12
$$

For different n, how close is the CLT approximation of $P(X \leq n / 3)$?

$$
n=2:
$$

$$
\text { Exact } \quad P(X \leq 2 / 3) \approx 0.2222
$$

CLT approximation

$$
\begin{aligned}
& X \approx Y \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right) \quad \Rightarrow Y \sim \mathcal{N}(1,1 / 6) \\
& \begin{aligned}
P(X \leq 2 / 3) & \approx P(Y \leq 2 / 3) \\
& =\Phi\left(\frac{2 / 3-1}{\sqrt{1 / 6}}\right) \quad \approx 0.2071
\end{aligned}
\end{aligned}
$$

Sum of n independent Uniform RVs

Let $X=\sum_{i=1}^{n} X_{i}$ be sum of iid RVs, where $X_{i} \sim \operatorname{Uni}(0,1) . \begin{aligned} & \mu=E\left[X_{i}\right]=1 / 2 \\ & \sigma^{2}=\operatorname{Var}\left(X_{i}\right)=1 / 12\end{aligned}$
For different n, how close is the CLT approximation of $P(X \leq n / 3)$?

$$
n=5:
$$

Exact $\quad P(X \leq 5 / 3) \approx 0.1017$

CLT approximation

$$
\begin{aligned}
& X \approx Y \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right) \quad \Rightarrow Y \sim \mathcal{N}(5 / 2,5 / 12) \\
& \begin{array}{l}
P(X \leq 5 / 3) \approx P(Y \leq 5 / 3) \\
\quad=\Phi\left(\frac{5 / 3-5 / 2}{\sqrt{5 / 12}}\right) \approx 0.0984
\end{array} . l
\end{aligned}
$$

Sum of n independent Uniform RVs

Let $X=\sum_{i=1}^{n} X_{i}$ be sum of iid RVs, where $X_{i} \sim \operatorname{Uni}(0,1) . \quad \mu=E\left[X_{i}\right]=1 / 2$

$$
\sigma^{2}=\operatorname{Var}\left(X_{i}\right)=1 / 12
$$

For different n, how close is the CLT approximation of $P(X \leq n / 3)$?

$$
n=10:
$$

$$
\text { Exact } \quad P(X \leq 10 / 3) \approx 0.0337
$$

CLT approximation

$$
\begin{aligned}
& X \approx Y \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right) \quad \Rightarrow Y \sim \mathcal{N}(5,5 / 6) \\
& P(X \leq 10 / 3) \approx P(Y \leq 10 / 3) \\
& \quad=\Phi\left(\frac{10 / 3-5}{\sqrt{5 / 6}}\right) \approx 0.0339
\end{aligned}
$$

Sum of n independent Uniform RVs

Let $X=\sum_{i=1}^{n} X_{i}$ be sum of iid RVs, where $X_{i} \sim \operatorname{Uni}(0,1) . \begin{aligned} & \mu=E\left[X_{i}\right]=1 / 2 \\ & \\ & \sigma^{2}=\operatorname{Var}\left(X_{i}\right)=1 / 12\end{aligned}$
For different n, how close is the CLT approximation of $P(X \leq n / 3)$?

Sample Statistics

What about other functions?

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid, where $E\left[X_{i}\right]=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. As $n \rightarrow \infty$:

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right) \quad \text { Sum of iid RVs }
$$

?
Average of iid RVs (sample mean)

Max of iid RVs

What about other functions?

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid, where $E\left[X_{i}\right]=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. As $n \rightarrow \infty$:

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right) \quad \text { Sum of iid RVs }
$$

?
Average of iid RVs (sample mean)

Max of iid RVs

Distribution of sample mean

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid, where $E\left[X_{i}\right]=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. As $n \rightarrow \infty$:
Define: $\quad \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ (sample mean) $\quad Y=\sum_{i=1}^{n} X_{i} \quad$ (sum)

$$
\begin{array}{ll}
Y \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right) & (\text { CLT, as } n \rightarrow \infty) \\
\bar{X}=\frac{1}{n} Y & \\
\bar{X} \sim \mathcal{N}(?, ?) & \text { (Linear transform of a Normal) }
\end{array}
$$

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

The average of iid random variables (i.e., sample mean) is normally distributed with mean μ and variance σ^{2} / n.

What about other functions?

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid, where $E\left[X_{i}\right]=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. As $n \rightarrow \infty$:

$$
\begin{aligned}
& \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right) \\
& \frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
\end{aligned}
$$

Gumbel

Sum of iid RVs

Average of iid RVs (sample mean)

Max of iid RVs

Exercises

Dice game

$$
\text { As } n \rightarrow \infty: \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

You will roll 106 -sided dice ($X_{1}, X_{2}, \ldots, X_{10}$).

- Let $X=X_{1}+X_{2}+\cdots+X_{10}$, the total value of all 10 rolls.
- You win if $X \leq 25$ or $X \geq 45$.

To the demo!

Dice game

$$
\text { As } n \rightarrow \infty: \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

You will roll 106 -sided dice $\left(X_{1}, X_{2}, \ldots, X_{10}\right)$.

- Let $X=X_{1}+X_{2}+\cdots+X_{10}$, the total value of all 10 rolls.
- You win if $X \leq 25$ or $X \geq 45$.

And now the truth (according to the CLT)...

1. Define RVs and $\quad E\left[X_{i}\right]=3.5$, Want: $\quad P(X \leq 25$ or $X \geq 45)$ state goal.

$$
\operatorname{Var}\left(X_{i}\right)=35 / 12 \quad \text { Approximate: }
$$

2. Solve.

Dice game

$$
\text { As } n \rightarrow \infty: \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

You will roll 106 -sided dice $\left(X_{1}, X_{2}, \ldots, X_{10}\right)$.

- Let $X=X_{1}+X_{2}+\cdots+X_{10}$, the total value of all 10 rolls.
- You win if $X \leq 25$ or $X \geq 45$.

And now the truth (according to the CLT)...

1. Define RVs and $\quad E\left[X_{i}\right]=3.5$, Want: $\quad P(X \leq 25$ or $X \geq 45)$ state goal.

$$
\operatorname{Var}\left(X_{i}\right)=35 / 12 \quad \text { Approximate: }
$$

$$
X \approx Y \sim \mathcal{N}(10(3.5), 10(35 / 12))
$$

2. Solve.

$$
P(Y \leq 25.5)+P(Y \geq 44.5) \quad \text { or } \quad \begin{array}{r}
1-P(25.5 \leq \\
\\
\\
\text { continuity } \\
\text { correction }
\end{array}
$$

Dice game

$$
\text { As } n \rightarrow \infty: \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

You will roll 10 6-sided dice $\left(X_{1}, X_{2}, \ldots, X_{10}\right)$.

- Let $X=X_{1}+X_{2}+\cdots+X_{10}$, the total value of all 10 rolls.
- You win if $X \leq 25$ or $X \geq 45$.

And now the truth (according to the CLT)...

1. Define RVs and $\quad E\left[X_{i}\right]=3.5, \quad$ Want: $\quad P(X \leq 25$ or $X \geq 45)$ state goal.
2. Solve.

$$
\begin{aligned}
& P(Y \leq 25.5)+P(Y \geq 44.5)=\Phi\left(\frac{25.5-35}{\sqrt{10(35 / 12)}}\right)+\left(1-\Phi\left(\frac{44.5-35}{\sqrt{10(35 / 12)}}\right)\right) \\
& \quad \approx \Phi(-1.76)+(1-\Phi(1.76)) \approx(1-0.9608)+(1-0.9608)=0.0786
\end{aligned}
$$

Dice game

$$
\text { As } n \rightarrow \infty: \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

You will roll 106 -sided dice $\left(X_{1}, X_{2}, \ldots, X_{10}\right)$.

- Let $X=X_{1}+X_{2}+\cdots+X_{10}$, the total value of all 10 rolls.
- You win if $X \leq 25$ or $X \geq 45$.

And now the truth (according to the CLT)...

(by CLT)

$$
\approx P(Y \leq 25.5)+P(Y \geq 44.5)
$$

$$
\approx 0.0786
$$

(exact, by computer)

$$
P(X \leq 25 \text { or } X \geq 45)=0.0780
$$

(sampling via computer)

$$
P(X \leq 25 \text { or } X \geq 45) \approx 0.0776
$$

Summary: Working with the CLT

Let $X_{1}, X_{2}, \ldots, X_{n}$ iid, where $E\left[X_{i}\right]=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. As $n \rightarrow \infty$:

$$
\begin{aligned}
& \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right) \\
& \frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
\end{aligned}
$$

Sum of iid RVs

Average of iid RVs (sample mean)

Crashing website

- Let $X=$ number of visitors to a website, where $X \sim$ Poi(100).
- The server crashes if there are ≥ 120 requests/minute.

What is P (server crashes in next minute)?
Strategy:
Poisson (exact)

$$
P(X \geq 120)=\sum_{k=120}^{\infty} \frac{(100)^{k} e^{-100}}{k!} \approx 0.0282
$$

Strategy:

CLT
(approx.)
How would we involve CLT here?
(Hint: Is there a way to represent X as a sum of iid RVs?)

Crashing website

- Let $X=$ number of visitors to a website, where $X \sim$ Poi(100).
- The server crashes if there are ≥ 120 requests/minute.

What is P (server crashes in next minute)?
Strategy:
Poisson (exact)

$$
P(X \geq 120)=\sum_{k=120}^{\infty} \frac{(100)^{k} e^{-100}}{k!} \approx 0.0282
$$

Strategy:	State approx. CLT	$\operatorname{Poi}(100) \sim \sum_{i=1}^{n} \operatorname{Poi}(100 / n)$
(approx. $)$		

Solve

$$
P(Y \geq 119.5)=1-\Phi\left(\frac{119.5-100}{\sqrt{100}}\right)=1-\Phi(1.95) \approx 0.0256
$$

Clock running time

$$
\text { As } n \rightarrow \infty: \frac{1}{n} \sum_{i=1}^{n} x_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Want to find the mean (clock)
runtime of an algorithm, $\mu=t \mathrm{sec}$.

- Suppose variance of runtime is $\sigma^{2}=4 \mathrm{sec}^{2}$.

Run algorithm repeatedly (iid trials):

- $X_{i}=$ runtime of i-th run (for $\left.1 \leq i \leq n\right)$
- Estimate runtime to be average of n trials, \bar{X}

How many trials do we need s.t. estimated time $=t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.
(CLT) $\quad \bar{X} \sim \mathcal{N}\left(t, \frac{4}{n}\right) \quad$ Want: $\quad P(t-0.5 \leq \bar{X} \leq t+0.5)=0.95$
(linear
transform of a normal)

$$
\bar{X}-t \sim \mathcal{N}\left(0, \frac{4}{n}\right)
$$

$$
P(-0.5 \leq \bar{X}-t \leq 0.5)=0.95
$$

Clock running time

$$
\text { As } n \rightarrow \infty: \frac{1}{n} \sum_{i=1}^{n} x_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Want to find the mean (clock)
runtime of an algorithm, $\mu=t$ sec.

- Suppose variance of runtime is $\sigma^{2}=4 \sec ^{2}$.

Run algorithm repeatedly (iid trials):

- $X_{i}=$ runtime of i-th run (for $\left.1 \leq i \leq n\right)$
- Estimate runtime to be average of n trials, \bar{X}

How many trials do we need s.t. estimated time $=t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.
$\bar{X}-t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$
$0.95=$

2. Solve.

$$
\begin{aligned}
0.95 & =F_{\bar{X}-t}(0.5)-F_{\bar{X}-t}(-0.5) \\
& =\Phi\left(\frac{0.5-0}{\sqrt{4 / n}}\right)-\Phi\left(\frac{-0.5-0}{\sqrt{4 / n}}\right)=2 \Phi\left(\frac{\sqrt{n}}{4}\right)-1
\end{aligned}
$$

 \(P(-0.5 \leq \bar{X}-t \leq 0.5)\)

Clock running time

$$
\text { As } n \rightarrow \infty: \frac{1}{n} \sum_{i=1}^{n} x_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Want to find the mean (clock)
runtime of an algorithm, $\mu=t$ sec.

- Suppose variance of runtime is $\sigma^{2}=4 \mathrm{sec}^{2}$.

Run algorithm repeatedly (iid trials):

- $X_{i}=$ runtime of i-th run (for $1 \leq i \leq n$)
- Estimate runtime to be average of n trials, \bar{X}

How many trials do we need s.t. estimated time $=t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.
$\bar{X}-t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$
$0.95=$

$$
P(-0.5 \leq \bar{X}-t \leq 0.5)
$$

$$
0.975=\Phi(\sqrt{n} / 4)
$$

$$
\sqrt{n} / 4=\Phi^{-1}(0.975) \approx 1.96
$$

$$
n \approx 62
$$

Clock running time

$$
\text { As } n \rightarrow \infty: \frac{1}{n} \sum_{i=1}^{n} x_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Want to find the mean (clock) runtime of an algorithm, $\mu=t \mathrm{sec}$.

- Suppose variance of runtime is $\sigma^{2}=4 \mathrm{sec}^{2}$.

Run algorithm repeatedly (iid trials):

- $X_{i}=$ runtime of i-th run (for $1 \leq i \leq n$)
- Estimate runtime to be average of n trials, \bar{X}

How many trials do we need s.t. estimated time $=t \pm 0.5$ with 95% certainty?

$$
n \approx 62
$$

Interpret: As we increase n (the size of our sample):

- The variance of our sample mean, σ^{2} / n decreases
- The probability that our sample mean \bar{X} is close to the true mean μ increases

Next time

Central Limit Theorem:

- Sample mean $\bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$
- If we know μ and σ^{2}, we can compute probabilities on sample mean \bar{X} of a given sample size n

In real life:

- Yes, the CLT still holds. It always holds!
- But we often don't know μ or σ^{2} of our original distribution
- However, we can collect data (a sample of size n)
- How can we estimate the values μ and σ^{2} from our sample? And how reliable are those estimates?

