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iid Random
Variables




Independence of multiple random variables Review

We have independence of n discrete random variables X4, X5, ..., X, if
forall x{, x5, ..., X"

P(Xl - xl,Xz - xz, — xn) - HP(X - xl)

Px, x,,. Xn(xltxZ: ey Xp) = HPX (x;)

We have independence of n continuous random variables X4, X5, ..., X, if
forall x{, x5, ..., X"

P(X;{ <x1,X <xp, .., Xy S X)) = HP(X < x;)
i=1
le Xo,.. Xn(xltxZ: s Xp) = nfx (x;)
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i.i.d. random variables

Consider n variables X4, X5, ..., X,,.
X1, X5, ..., X, are independent and identically distributed if
* Xq,X5, ..., X, are independent, and
* All have the same PMF (if discrete) or PDF (if continuous).
= E|X;]=ufori=1,..,n
= Var(X;) =c?fori=1,..,n

Same thing: l.i.d. lid IID
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Quick check

Are X4, X5, ..., X, iid with the following distributions?
1. X;~Exp(1), X; independent

2. X;~Exp(4;), X; independent

3. X;~Exp(), X; =X, ==X,

4. X;~Bin(n;,p), X; independent
&
R
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Quick check

Are X4, X, ..., X;, 1id with the following distributions?

1. X;~Exp(4), X; independent
2. X;~Exp(4;), X; independent X (unless 1; equal)
3. X;~Exp(1), X; =X, ==X, X dependent: X; = X, = - = X,

4. X;~Bin(n;,p), X; independent X (unless n; equal)
Note underlying Bernoulli RVs are iid!
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Central Limit
Theorem
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https://prwatech.in/blog/wp-content/uploads/2019/06/CetralLimitThm-1200x600.png

Central Limit Theorem

Consider n independent and identically distributed (iid) variables X, X5, ..., X,
with E[X;] = p and Var(X;) = ¢2.

Asn — oo

z X; ~N (nu,no?)

The sum of n iid random variables is normally distributed with mean nu
and variance no?.
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Sum of dice rolls

Roll n independent dice. Let X; be the outcome of roll i. X; are iid

How many ways
can you roll a total

0.2
I Of3VSll'?

1 2 3 4 5 © 8 10 12 3 5 7 911131517
1 2 3
EX' Sumof 1 EX' Sum of 2 EX' Sum of 3
L.t dieroll Y dice rolls Y dice rolls
i=1 i=1 i=1
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CLT explains a lot

S fom Th f niid rand iables i |
L 2 e sum of n iid random variables is normally
Z Xi~N (nu, o) distributed with mean nu and variance no?.
1=
R O
Galton Board, by Sir Francis Galton
(1822-1911)
n=>5 g
\4

0 1 2 3 4
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CLT explains a lot

200 1

Asn — oo

distributed with mean nu and variance no?.

n
Z X; ~N (nu,no?) The sum of n iid random variables is normally
1=1

Population

Sum Distribution

800
700
600 1

Sample of
size 15, 400 1
sum values 300

200 +

Count

100 A1

0 20 40 60 80 100 0

Value

Distribution of X;
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CLT explains a lot

350 1

n
Z Xi NN(Tl
=1

Asn — oo

u,no?)

The sum of n iid random variables is normally
distributed with mean nu and variance no?.

Mean Distribution

Population
600 A
500 |
Sample of 200 |
size 15, & o
average values 200 1
20 40 60 80 100 °

Value

Distribution of X;

(sample mean)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

20 40 60 80 100
Value

Distribution of —¥15, X;
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Proof of CLT

Asn —» o

n
z X; ~N (nu,no?) The sum of n iid random variables is normally
i=1

distributed with mean nu and variance no?.

Proof:

The Fourier Transform of a PDF is its characteristic function.

Take the characteristic function of the probability mass of the sample
distance from the mean, divided by standard deviation

Show that this approaches an x?
exponential function in the limitasn — co:  f(¥) =€ 2

This function is in turn the characteristic function of the Standard
Normal, Z~ N (0,1).
(this proof is beyond the scope of CS109)
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Sum of n independent Uniform RVs

u=E[X;]=1/2
o2 =Var(X;) = 1/12

For different n, how close is the CLT approximation of P(X < n/3)?

Let X = Y.7", X; be sum of iid RVs, where X;~Uni(0,1).

n = 2:

Exact P(X <2/3) =0.2222
. ' ~ ar | CLT approximation
0.8
6. X=Y~N(nu,no®) = yY~N(1,1/6)
a) g \“\
0.4 P(X<2/3)~P(Y <2/3)
0.2 \
2/3 -1
ol - _ q>< / ) ~ 0.2071
1.0 0.5 0.0 0.5 1.0 15 20 25 3.07% 1/6
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Sum of n independent Uniform RVs

u=E[X;]=1/2
o2 =Var(X;) = 1/12

For different n, how close is the CLT approximation of P(X < n/3)?

Let X = Y.7", X; be sum of iid RVs, where X;~Uni(0,1).

n =5:

Exact P(X <5/3) = 0.1017
0.6 N " ar | CLT approximation
0.5 1 [\
04 X=Y~N(nuno?) = Y~N(5/2,5/12)
£0.3 1 ‘,’l \
0.2 P(X <5/3) = P(Y <5/3)
0.1] /
/ \ 5/3—-5/2
0.0 —— — | = CD( / / ) ~ 0.0984
10 00 10 20 30 40 50 6.0F% J5/12
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Sum of n independent Uniform RVs

u=E[X;]=1/2
o2 =Var(X;) = 1/12

For different n, how close is the CLT approximation of P(X < n/3)?

Let X = Y.7", X; be sum of iid RVs, where X;~Uni(0,1).

n = 10:

Exact P(X <£10/3) = 0.0337

0.4 ‘,f”“\\ " ar | CLT approximation
03 X =Y~N(nu,no*) = Y~N(5,5/6)
a [ \
30.2 j ~,

0.1]

10/3 -5
0.0 +——— - N— = CD( / ) = 00339
00 20 40 60 80 100 * \5/6
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Sum of n independent Uniform RVs

u=E[X;]=1/2
o2 =Var(X;) = 1/12

For different n, how close is the CLT approximation of P(X < n/3)?

Let X = )./, X; be sum of iid RVs, where X;~Uni(0,1).

1.0 = — = sum
ar 0.6 ar 0.4 ar
0.8 0.5 /
L 56 w 0.4 L — /(
D ' D D ;’ \\
o a 0.3 O 0.2 { \
04 l’ ‘\
0.2 / \
0.1 / \
0.2 0.1 / \
0.0 ——=- ' ' i s 0.0 +——~ i i i smmmmames: 0 @@ e
-1.0 -0.5 0.0 05 10 15 20 25 30 X -1.0 00 10 20 3.0 40 50 6.0 X 0:0 2.0 4_'0 6_'0 8.0 1d,0

Most books will tell you that CLT holds if n = 30, but it can hold
for smaller n depending on the distribution of your iid X;’s.
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Sample
Statistics




What about other functions?

Let X, X5, ..., X,, be iid, where E[X;] = u,Var(X;) = g%. Asn > oo:

n
2 X; ~N (nu,no?) Sum of iid RVs
i=1

P Average of iid RVs
(sample mean)

? Max of iid RVs
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What about other functions?

Let X, X5, ..., X,, be iid, where E[X;] = u,Var(X;) = 6%. Asn > oo:

n
z X; ~N (nu,no?) Sum of iid RVs
i=1

P Average of iid RVs
(sample mean)

? Max of iid RVs
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Distribution of sample mean

Let X, X5, ..., X,, be iid, where E[X;] = u,Var(X;) = 2. Asn > oo:

. R C
Define: X = EZX" (sample mean) Y = ZXi (sum)
=1 i=1
Y~N (nu,no?) (CLT, as n — o)
1
X==Y
n
X~N(?,7) (Linear transform of a Normal)

1 n 52 The average of iid random variables (i.e.,
_z X; ~N(u,—) sample mean) is normally distributed with
N &= n mean u and variance o /n.

Demo: http://onlinestatbook.com/stat sim/sampling dist/
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http://onlinestatbook.com/stat_sim/sampling_dist/

What about other functions?

Let X, X5, ..., X,, be iid, where E[X;] = u,Var(X;) = 6%. Asn > oo:

n
2 X; ~N (nu,no?) Sum of iid RVs
i=1

1w o )

—2 X;i~N(u,—) Average of iid RVs
" i=1 n (sample mean)

Gumbel Max of iid RVs

(see Fisher-Tippett Ghedenko Theorem)
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Exercises




Dice game As n — oo: ZXi ~N (nu,no?)

i=1

You will roll 10 6-sided dice (X, X5, ..., X1¢0)-
 LetX =X, + X, + -+ X4, the total value of all 10 rolls.
* Youwinif X < 25o0r X = 45.

e

To the demo!

&
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Dice game As n — oo: ZXi ~N (nu,no?)

You will roll 10 6-sided dice(Xq, X5, ..., X19)- “ <o

° LetX =X, + X, + -+ X;,, the total value of all 10 rolls.
* Youwinif X < 25o0r X = 45.

And now the truth (according to the CLT)...

1. Define RVs and E[X; ] = 3.5, Want: P(X < 250rX = 45)
state goal. Var(X;) = 35/12  Approximate: 5
2. Solve.
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n
As n — oo: ZXi ~N (nu,no?)

@

Dice game

You will roll 10 6-sided dice(Xq, X5, ..., X19)-
° LetX =X, + X, + -+ X;,, the total value of all 10 rolls. ﬁ

* Youwinif X < 25o0r X > 45.
And now the truth (according to the CLT)...

1. Define RVs and E[X; ] = 3.5, Want: P(X < 250rX = 45)
state goal. Var(X;) = 35/12  Approximate:
X =~ Y~N(10(3.5),10(35/12))

2. Solve.

P(Y £ 25.5)+ P(Y = 44.5) or 1—-P(255<Y <44)5)

continuity
correction

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024
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Dice game

You will roll 10 6-sided dice(Xy, X, ..., X10)-
* LetX =X, + X, + -+ X;,, the total value of all 10 rolls.

* Youwinif X < 250r X = 45.
And now the truth (according to the CLT)...

2. Solve.

25.5 — 35 44.5 — 35
P(Y < 25.5)+ P(Y = 44.5) = _
( )+ P ) =¢ (/10(35/12)) ¥ (1 ? <\/10(35/12)> >

~ ®(—1.76) + (1 — ®(1.76)) =~ (1 —0.9608) + (1 —0.9608) = 0.0786
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Dice game

As n — oo: zX ~N (nu,no?)

You will roll 10 6-sided dice(X, X5, ..., X1¢)- <=
° LetX =X, + X5 + -+ + X4, the total value of all 10 rolls. “ v

* Youwinif X < 25o0r X > 45.

And now the truth (according to the CLT)... Check out
the code!
0.08 (by CLT)
0.06 ~ P(Y < 25.5) + P(Y = 44.5)
~ 0.0786
0.04 (exact, by computer)
0.02 “ “ P(X <250rX >45) =0.0780
VR —— |I|I‘ ‘Ilh--- (sampling via computer)
10 30 40 50

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024
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Summary: Working with the CLT

Let X;, X5, ..., X, iid, where E[X;] = u,Var(X;) = 2. Asn > oo:

n
z X; ~N (nu,no?) Sum of iid RVs :
i=1 }
If X; is discrete:

n
1 o’ . Use the continuity
Ez Xi ~N (u, 7) Average of iid RVs correction on Y!
i—1 (sample mean)
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Crashing website

Let X = number of visitors to a website, where X~Poi(100).
The server crashes if there are = 120 requests/minute.

What is P(server crashes in next minute)?

Strategy: © (100)*e-100
Poisson (exact) P(X = 120) =k;0 7 ~ (0.0282
Strategy:
CLT
(approx.)
How would we involve CLT here? D
(Hint: Is there a way to represent X as a sum of iid RVs?) @ ‘

e
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Crashing website

Let X = number of visitors to a website, where X~Poi(100).
The server crashes if there are = 120 requests/minute.

What is P(server crashes in next minute)?
~ (0.0282

Strategy: State
CLT approx.
(approx.) goal

- ~ Y~ 2
P0i(100)~ ) Poi(100/n) X ~ Y~N(nu,no?)
=1

P(X = 120) ~ P(Y > 119.5)

Solve 119.5 — 100

P(Y >1195) =1 — cp( s ) —1—®(1.95) ~ 0.0256
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A 1Zn:X Iy o’
S N — 00; n,l i (Mrn)
=

Clock running time
Want to find the mean (clock) Run algorithm repeatedly (iid trials):
runtime of an algorithm, u = t sec. * X; = runtime of i-th run (for1 <i < n)
Suppose variance of « Estimate runtime to be
runtime is g% = 4 sec?. average of n trials, X

How many trials do we need s.t. estimated time = t + 0.5 with 95% certainty?

Define RVs and
state goal.

. 4 )
o T (t, E) Want: P(t—05<X <t+05) =095

(linear . 4 _
transformof X — t~N (O, —) P(-05<X-t<0.5) =0.95
a normal) n
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il o’
As n — oo; —Z Xi~N(u,—)
Tli:1 n

Clock running time
Want to find the mean (clock) Run algorithm repeatedly (iid trials):
runtime of an algorithm, u = t sec. * X; = runtime of i-th run (for1 <i < n)

Suppose variance of

e Estimate runtime to be

runtime is 6% = 4 sec?. average of n trials, X
How many trials do we need s.t. estimated time = t + 0.5 with 95% certainty?

Solve

o(2)-o (2520 (D
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A 1Zn:X Iy o’
S N — 00; n,l i (Mrn)
=

Clock running time
Want to find the mean (clock) Run algorithm repeatedly (iid trials):
runtime of an algorithm, u = t sec. * X; = runtime of i-th run (for1 <i < n)

Suppose variance of « Estimate runtime to be

runtime is g% = 4 sec?. average of n trials, X
How many trials do we need s.t. estimated time = t + 0.5 with 95% certainty?

Solve
0.95
n
=2 <\/T_> -1

0.975 = d(Yn/4)
Jn/4 = ®71(0.975) ~ 1.96 n=~ 62
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il o’
As n — oo; —Z Xi~N(u,—)
Tli:1 n

Clock running time
Want to find the mean (clock) Run algorithm repeatedly (iid trials):
runtime of an algorithm, u = t sec. * X; = runtime of i-th run (for1 <i < n)
Suppose variance of » Estimate runtime to be
runtime is g% = 4 sec?. average of n trials, X

How many trials do we need s.t. estimated time = t + 0.5 with 95% certainty?

n=~o62

Interpret: As we increase n (the size of our sample):
The variance of our sample mean, ¢ /n decreases
The probability that our sample mean X is close

to the true mean u increases
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Next time

Central Limit Theorem:
Sample mean X ~N (u, 0% /n)

If we know u and g%, we can compute probabilities on
sample mean X of a given sample size n

In real life:
Yes, the CLT still holds. It always holds!

But we often don’t know u or o of our original distribution
However, we can collect data (a sample of size n)

How can we estimate the values u and o2 from our sample? And how
reliable are those estimates?

...until next time!
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