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Stanford	logo	with	darts

3

Quick check: What is the probability that a dart
hits at (456.2344132343, 532.1865739012)?

The Stanford letterhead logo was 
created by throwing 500,000 darts 
according to a joint distribution.

If we throw another dart according to 
the same distribution, what is 
P(dart hits within 𝑟 pixels of center)?

not really, but let’s pretend

zero
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CS109	logo	with	darts

4

1 pixel = 1 dart thrown
at screen

Possible dart counts (in 100x100 boxes)

P(dart hits within 𝑟 pixels of center)?
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CS109	logo	with	darts
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Possible dart counts (in 50x50 boxes)

P(dart hits within 𝑟 pixels of center)?
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CS109	logo	with	darts
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Possible dart counts
(in infinitesimally small boxes)

P(dart hits within 𝑟 pixels of center)?
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Continuous	joint	probability	density	functions
If two random variables 𝑋 and 𝑌 are jointly continuous, then there exists a 
joint probability density function 𝑓!,# defined over −∞ < 𝑥, 𝑦 < ∞ such that:

𝑃 𝑎$ ≤ 𝑋 ≤ 𝑎%, 	 𝑏$≤ 𝑌 ≤ 𝑏% = 1
&!

&"
1
'!

'"
𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥	

7
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From	one	continuous	RV	to	jointly	continuous	RVs
Single continuous RV 𝑋

• PDF 𝑓! 	such that ∫()
) 𝑓! 𝑥 𝑑𝑥 = 1

• Integrate to get probabilities

Jointly continuous RVs 𝑋 and 𝑌

• PDF 𝑓!,# 	such that∫()
) ∫()

) 𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = 1
• Double integrate to get probabilities

8

Probability for jointly continuous RVs is volume under a surface.

0 … 44 52 60 … 90
!

Probability = area 
under curve
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Double	integrals	without	tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

Write down the definite double integral that
must integrate to 1:
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Double	integrals	without	tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

Write down the definite double integral that
must integrate to 1:

1
*+,

%
1
-+,

$
𝑥𝑦	𝑑𝑥 𝑑𝑦 = 1 or 1

-+,

$
1
*+,

%
𝑥𝑦	𝑑𝑦 𝑑𝑥 = 1

(used in next slide)
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Double	integrals	without	tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

11

1	 = $
!"

"
$
!"

"
𝑔 𝑥, 𝑦 𝑑𝑥	𝑑𝑦 = $

#$%

&
$
'$%

(
𝑥𝑦	𝑑𝑥	𝑑𝑦

$
#$%

&
$
'$%

(
𝑥𝑦	𝑑𝑥 𝑑𝑦 = $

#$%

&
𝑦 $

'$%

(
𝑥	𝑑𝑥 𝑑𝑦 = $

#$%

&
𝑦
𝑥&

2 %

(

𝑑𝑦 = $
#$%

&
𝑦
1
2
𝑑𝑦

$
#$%

&
𝑦
1
2
𝑑𝑦 =

𝑦&

4 #$%

&

= 1	 − 0 = 1

1. Evaluate inside integral by treating 𝑦 as a constant:

2. Evaluate remaining (single) integral:

Yes, 𝑔 𝑥, 𝑦 is a valid joint PDF
because it integrates to 1.

0. Set up integral:
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Marginal	distributions
Suppose 𝑋 and 𝑌 are continuous random
variables with joint PDF:

The marginal density functions—that is, the marginal PDFs—are therefore:

𝑓! 𝑎 = 1
()

)
𝑓!,# 𝑎, 𝑦 𝑑𝑦	 𝑓# 𝑏 = 1

()

)
𝑓!,# 𝑥, 𝑏 𝑑x

12

𝑓) 𝑥 𝑓* 𝑦$
!"

"
$
!"

"
𝑓),* 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = 1
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Back	to	darts!
Match 𝑋 and 𝑌 to their respective marginal PDFs:

13

(top-down)

(side view)
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Back	to	darts!
Match 𝑋 and 𝑌 to their respective marginal PDFs:

14

pixel x pixel y

(top-down)

(side view)



Joint	CDFs
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CDFs	and	PDFs	in	one	dimension
For a one-dimensional continuous random variable 𝑋 with PDF 𝑓, the CDF 
(cumulative distribution function) is

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = 1
()

&
𝑓 𝑥 𝑑𝑥

The density 𝑓 is the derivative of the CDF, 𝐹:

𝑓 𝑥 =
𝑑
𝑑𝑥

𝐹 𝑥

16

Fundamental Theorem 
of Calculus

Review
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Single	variable	CDF,	graphically

17

lim
'→!"

𝐹- 𝑥 = 0

lim
'→."

𝐹) 𝑥 = 1

𝐹! 𝑥 = 𝑃 𝑋 ≤ 𝑥𝑓! 𝑥

Review
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Joint	cumulative	distribution	function

For two random variables 𝑋 and 𝑌, there can be a joint cumulative 
distribution function 𝐹!,#:

𝐹3,4 𝑎, 𝑏 = 𝑃 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏

18

For continuous 𝑋 and 𝑌:

𝐹!,# 𝑎, 𝑏 = 1
()

&
1
()

'
𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

𝑓!,# 𝑎, 𝑏 = 1"

1&	1'
 𝐹!,# 𝑎, 𝑏

For discrete 𝑋 and 𝑌:

𝐹!,# 𝑎, 𝑏 = ;
-3&

;
*3'

𝑝!,#(𝑥, 𝑦)
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Joint	CDF,	graphically

19

lim
',#→!"

𝐹),* 𝑥, 𝑦 = 0

lim
',#→."

𝐹),* 𝑥, 𝑦 = 1

𝐹!,# 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦𝑓!,# 𝑥, y



Independent	
Continuous	RVs
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Independent	continuous	RVs
Two continuous random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦
Equivalently:

𝐹!,# 𝑥, 𝑦 = 𝐹! 𝑥 𝐹# 𝑦
𝑓!,# 𝑥, 𝑦 = 𝑓! 𝑥 𝑓# 𝑦

Proof of PDF:

21

𝑓),* 𝑥, 𝑦 =
𝜕&

𝜕𝑥	𝜕𝑦
 𝐹),* 𝑥, 𝑦 =

𝜕&

𝜕𝑥	𝜕𝑦
 𝐹) 𝑥 𝐹* 𝑦

=
𝜕
𝜕𝑥

𝜕
𝜕𝑦	

𝐹) 𝑥 𝐹* 𝑦

= 𝑓) 𝑥 𝑓* 𝑦

=
𝜕
𝜕𝑥	

𝐹) 𝑥
𝜕
𝜕𝑦	

𝐹* 𝑦

∀𝑥, 𝑦

∀𝑥, 𝑦
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Independent	continuous	RVs
Two continuous random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦
Equivalently:

𝐹!,# 𝑥, 𝑦 = 𝐹! 𝑥 𝐹# 𝑦
𝑓!,# 𝑥, 𝑦 = 𝑓! 𝑥 𝑓# 𝑦

More generally, 𝑋 and 𝑌 are independent if the joint PDF factors into two, 
single-variable marginal probability densities:

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 , where −∞ < 𝑥, 𝑦 < ∞

22

∀𝑥, 𝑦

∀𝑥, 𝑦
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Pop	quiz!	(just	kidding)
Are 𝑋 and 𝑌 independent in the following cases?

23

independent
𝑋 and 𝑌

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 ,
where − ∞ < 𝑥, 𝑦 < ∞

1.  𝑓!,# 𝑥, 𝑦 = 6𝑒(4-𝑒(%*
 where 0 < 𝑥, 𝑦 < ∞

2.  𝑓!,# 𝑥, 𝑦 = 4𝑥𝑦
 where 0 < 𝑥, 𝑦 < 1

3.  𝑓!,# 𝑥, 𝑦 = 24𝑥𝑦
 where 0 < 𝑥 + 	𝑦 < 1
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Pop	quiz!	(just	kidding)
Are 𝑋 and 𝑌 independent in the following cases?

24

1.  𝑓!,# 𝑥, 𝑦 = 6𝑒(4-𝑒(%*
 where 0 < 𝑥, 𝑦 < ∞

2.  𝑓!,# 𝑥, 𝑦 = 4𝑥𝑦
 where 0 < 𝑥, 𝑦 < 1

3.  𝑓!,# 𝑥, 𝑦 = 24𝑥𝑦
 where 0 < 𝑥 + 	𝑦 < 1

𝑔 𝑥 = 3𝑒!:'
ℎ 𝑦 = 2𝑒!&#	

𝑔 𝑥 = 2𝑥
ℎ 𝑦 = 2𝑦

Cannot capture constraint on 𝑥 + 	𝑦! ❌

✅

✅

independent
𝑋 and 𝑌

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 ,
where − ∞ < 𝑥, 𝑦 < ∞

Separable functions:

Separable functions:

If you can factor densities over the entire 
support, you have independence.
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More	pop	quiz!	(more	kidding)
 𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

25

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2
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More	pop	quiz!	(more	kidding)
 𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

26

𝑔 𝑥 = 3𝐶𝑒!:' , 0 < 𝑥 < ∞	
ℎ 𝑦 = 1/𝐶, 	 1 < 𝑦 < 2 

𝐶 is a 
constant

✅

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2

𝑥
𝑦

𝑓 )
,*
𝑥,
𝑦
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More	pop	quiz!	(more	kidding)
 𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

27

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2

𝑔 𝑥 = 3𝑒!:' , 0 < 𝑥 < ∞	
ℎ 𝑦 = 1, 	 1 < 𝑦 < 2 

✅



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

The	joy	of	meetings
Two people set up a meeting time. Each arrives independently at a time uniformly 
distributed between 12pm and 12:30pm.
Define 𝑋 = # minutes past 12pm that person 1 arrives.  𝑋~Uni 0, 30
	 𝑌 = # minutes past 12pm that person 2 arrives. 𝑌~Uni 0, 30
What is the probability that the first to arrive waits >10 mins for the other?

Compute: 𝑃 𝑋 + 10 < 𝑌 + 𝑃 𝑌 + 10 < 𝑋 = 2𝑃 𝑋 + 10 < 𝑌
1. What is symmetry here?
2. How do we integrate to compute this probability?

28

(by symmetry)
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Double	integrals:	A	guide

29

(by symmetry, 
independence)= 2 B

'.(%;#,
%<',#,<:%

1/30 &𝑑𝑥𝑑𝑦

=
2
30&

$
(%

:%
$
%

#!(%
𝑑𝑥𝑑𝑦

=
2
30&

$
(%

:%
𝑦 − 10 𝑑𝑦 = ⋯ =

4
9

2𝑃 𝑋 + 10 < 𝑌

Steps:
1. Draw a picture.
2. Set bounds "from outside in".
• Outer integral bounds should

be full range possible
• Inner integral can depend on 

integration variable of outer 
integral

From last slide:



Bivariate	
Normal	
Distribution

30
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Bivariate	Normal	Distribution
𝑋$ and 𝑋% follow a bivariate normal distribution if their joint PDF 𝑓	is

𝑓 𝑥!, 𝑥" =
1

2𝜋𝜎!𝜎" 1 − 𝜌"
𝑒
#	 !
" !#%"

&!#'! "

(!"
	 # "% &!#'! &"#	'"

(!("
	)	 &"#'"

"

(""

Can show that 𝑋$~𝒩 𝜇$, 𝜎$% , 𝑋%~𝒩 𝜇%, 𝜎%%

Often written as:    𝑿~𝒩(𝝁, 𝚺)
• Vector 𝑿 = 𝑋$, 𝑋%
• Mean vector 𝝁 = 𝜇(, 𝜇& , Covariance matrix: 𝚺 =

𝜎(& 𝜌𝜎(𝜎&
𝜌𝜎(𝜎& 𝜎&&

31

We will focus on understanding the 
shape of a bivariate Normal RV.Recall correlation: 𝜌 = Cov !!,!"

5!5"

(Ross chapter 6, example 5d)



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Back	to	darts

32

(top-down)

(side view)

Darts were thrown according to a bivariate normal distribution:

𝝁 = 450, 600 	

𝚺 = 900&/4 0
0 900&/25

𝑋, 𝑌 ~𝒩 𝝁, 𝚺

pixel x pixel y

Marginal 
PDFs: 𝑋~𝒩 450,

900&

4
𝑌~𝒩 600,

900&

25
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A	diagonal	covariance	matrix
Let 𝑿 = 𝑋$, 𝑋%  follow a bivariate normal distribution 𝑿~𝒩(𝝁, 𝚺), where 

𝝁 = 𝜇$, 𝜇% , 	𝚺 =
𝜎$% 0
0 𝜎%%

Are 𝑋$ and 𝑋% independent?

33

✅

𝑓 𝑥(, 𝑥& =
1

2𝜋𝜎(𝜎& 1 − 𝜌&
𝑒
!	 (
& (!>!

'"!?" !

@"!
	 ! &> '"!?" '!!	?!

@"@!
	. '!!?! !

@!!

=
1

2𝜋𝜎(𝜎&
𝑒
!	 (&

'"!?" !

@"!
	 .	 '!!?! !

@!!
(Note covariance: 𝜌𝜎(𝜎& = 0)

=
1

𝜎( 2𝜋
𝑒! '"!?" !/&@"!

1
𝜎& 2𝜋

𝑒! '!!?! !/&@!!

𝑋(	and 𝑋& are independent  
with marginal distributions 
𝑋(~𝒩 𝜇(	𝜎(& , 𝑋&~𝒩(𝜇&	𝜎&&)
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𝑋,𝑌 	Matching	(all	have	𝝁 = 0, 0 )

34

x
y

PD
F

x

y

1.  

x
y

PD
F

x

y

3.  

x
y

PD
F

x

y

2.  

x
y

PD
F

x

y

4.  

A. 1 0
0 1 B. 1 0	

0 2

C. 1 0.5
0.5 1 D. 1 −0.5

−0.5 1
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𝑋,𝑌 	Matching	(all	have	𝝁 = 0, 0 )

35

x
y

PD
F

x

y

1.  

x
y

PD
F

x

y

3.  

x
y

PD
F

x

y

2.  

x
y

PD
F

x

y

4.  

A. 1 0
0 1 B. 1 0	

0 2

C. 1 0.5
0.5 1 D. 1 −0.5

−0.5 1
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Why	are	joint	PDFs	useful?

36

• How 2 continuous RVs 
vary with each other

• How continuous RV is 
distributed given 
evidence (more on Friday)

• How a continuous RV 
can be decomposed 
into 2 RVs (or vice versa)

𝑥
𝑦

Independence
2-D support

Joint PDF
Joint CDF

Marginal PDF
Conditional PDF

𝑃 𝑋 < 𝑌 ,	
Cov 𝑋, 𝑌 , 𝜌(𝑋, 𝑌)

Given 𝑌 = 𝑦, the 
distribution of 𝑋

Distribution of 𝑍 = 𝑋 + 𝑌
(which is a 1-D RV!)



Sum	of	
Independent	
Gaussians

37
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Sum	of	independent	Gaussians

38

𝑋~𝒩 𝜇S, 𝜎ST ,
𝑌~𝒩 𝜇T, 𝜎TT
𝑋, 𝑌 independent

𝑋 + 𝑌	~𝒩(𝜇0 + 𝜇1, 𝜎01 + 𝜎11)

(proof left to Wikipedia)

Holds in general case:

𝑋B~𝒩 𝜇B , 𝜎B&

𝑋B independent for 𝑖 = 1,… , 𝑛 ;
6+$

7

𝑋6 ~𝒩 ;
6+$

7

𝜇6 ,;
6+$

7

𝜎6%

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
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Back	for	another	playoffs	game

What is the probability that the Warriors win?
How do you model zero-sum games?

𝑃 𝐴! > 𝐴"
This is a probability of an event 
involving two random variables!

We will compute: 

𝑃 𝐴! − 𝐴" > 0
A sum of Normals!
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Motivating	idea:	Zero	sum	games
Want: 𝑃 Warriors win = 𝑃 𝐴8 − 𝐴9 > 0  

Assume 𝐴8 , 𝐴9 are independent.
Let 𝐷 = 𝐴8 − 𝐴9.

40

What is the distribution of 𝐷?

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000

A.  𝐷~𝒩 1657 − 1470,	 200%	−	200%
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Motivating	idea:	Zero	sum	games
Want: 𝑃 Warriors win = 𝑃 𝐴8 − 𝐴9 > 0  

Assume 𝐴8 , 𝐴9 are independent.
Let 𝐷 = 𝐴8 − 𝐴9.
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C.  𝐷~𝒩 1657 + 1470, 200% + 200%
D.  𝐷~𝒩 1657 + 1470, 200%

What is the distribution of 𝐷?

If 𝑋~𝒩 𝜇(, 𝜎& ,
then −𝑋 ~𝒩 −𝜇, −1 &𝜎& = 𝜎& .
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Want: 𝑃 Warriors win = 𝑃 𝐴8 − 𝐴9 > 0  
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𝐷~𝒩 1657 − 1470,	 200%+200%

~𝒩 187, 2 ⋅ 200% 𝜎 ≈ 282.842

𝑃 𝐷 > 0 = 1 − 𝐹: 0 = 1 − Φ
0 − 187
282.842

≈ 0.74574
Compare with 0.7488, calculated by sampling!
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>>> from scipy.stats import norm
>>> 1 - norm(187, 80000 ** 0.5).cdf(0)
0.7457402843526317
>>> 1 - norm(0, 1).cdf(-187 / (80000 ** 0.5))
0.7457402843526317
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Virus	infections
Suppose you are working with the WHO to initiate a response to the onset 
of a virus. There are two exposed groups:
• G1: 20000 people, each independently infected with 𝑝( = 0.1
• G2: 10000 people, each independently infected with 𝑝& = 0.4

What is 𝑃 people infected ≥ 6100 ? An approximation is okay.

43

Strategy:
A. Sum of independent Binomials
B. Sum of independent Poissons
C. Sum of independent Gaussians
D. Sum of independent Exponentials

Let 𝐴 = # infected in G1.
 𝐴~Bin 20000,0.1 	
 𝐵 = # infected in G2.
 𝐵~Bin 10000,0.4 	

Want: 𝑃 𝐴 + 𝐵 ≥ 6100

1. Define RVs
& state goal
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Virus	infections
Suppose you are working with the WHO to initiate a response to the onset 
of a virus. There are two exposed groups:
• G1: 20000 people, each independently infected with 𝑝( = 0.1
• G2: 10000 people, each independently infected with 𝑝& = 0.4

What is 𝑃 people infected ≥ 6100 ? An approximation is okay.
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2. Approximate as sum of Gaussians

Let 𝐴 = # infected in G1.
 𝐴~Bin 20000,0.1 	
 𝐵 = # infected in G2.
 𝐵~Bin 10000,0.4 	

Want: 𝑃 𝐴 + 𝐵 ≥ 6100

𝐴 ≈ 𝑋~𝒩 2000, 1800 𝐵 ≈ 𝑌~𝒩 4000, 2400
1. Define RVs

& state goal
𝑃 𝐴 + 𝐵 ≥ 6100 ≈ 𝑃 𝑋 + 𝑌 ≥ 6099.5 continuity 

correction
3. Solve
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Virus	infections
Suppose you are working with the WHO to initiate a response to the onset 
of a virus. There are two exposed groups:
• G1: 20000 people, each independently infected with 𝑝( = 0.1
• G2: 10000 people, each independently infected with 𝑝& = 0.4

What is 𝑃 people infected ≥ 6100 ? An approximation is okay.
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2. Approximate as sum of Gaussians

Let 𝐴 = # infected in G1.
 𝐴~Bin 20000,0.1 	
 𝐵 = # infected in G2.
 𝐵~Bin 10000,0.4 	

Want: 𝑃 𝐴 + 𝐵 ≥ 6100

1. Define RVs
& state goal

3. Solve
Let 𝑊 = 𝑋 + 𝑌~𝒩 6000, 4200

≈ 1	 − 	Φ(1.53531) ≈ 0.06235

= 1 − Φ
6099.5 − 6000

4200
𝑃 𝑊 ≥ 6099.5

𝐴 ≈ 𝑋~𝒩 2000, 1800 𝐵 ≈ 𝑌~𝒩 4000, 2400
𝑃 𝐴 + 𝐵 ≥ 6100 ≈ 𝑃 𝑋 + 𝑌 ≥ 6099.5 continuity 

correction

>>> 1 - norm(6000, 4200 ** 0.5).cdf(6099.5)
0.06235282662988528
>>> 1 - norm(0, 1).cdf((6099.5 - 6000)/(4200 ** 0.5))
0.06235282662988528
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Sum	of	independent	Gaussians

46

𝑋S~𝒩 𝜇S, 𝜎ST ,
𝑋T~𝒩 𝜇T, 𝜎TT
𝑋$, 𝑋% independent

𝑋0 + 𝑋1~𝒩(𝜇0 + 𝜇1, 𝜎01 + 𝜎11)

Is this related to linear transformations of Gaussians?
Recall:

If 𝑌 = 𝑎𝑋 + 𝑏, then 𝑌~𝒩 𝑎𝜇! + 𝑏, 𝑎"𝜎!"
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Teaser:	Linear	transforms	vs.	independence
Let 𝑋~𝒩(𝜇, 𝜎%) and 𝑌 = 𝑋 + 𝑋. What is the distribution of 𝑌?
• Are both approaches valid?
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Independent RVs approach

⚠

Let 𝑋~𝒩(𝜇, 𝜎&).
If 𝑌 = 𝑎𝑋 + 𝑏,

then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎&𝜎&).

Let 𝑋(~𝒩 𝜇(, 𝜎(& , 𝑋&~𝒩 𝜇&, 𝜎&&
be independent.

Then 𝑌 = 𝑋( + 𝑋&~𝒩(𝜇( + 𝜇&, 𝜎(& + 𝜎&&)

Linear transform approach
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• Are both approaches valid?
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𝑋 is NOT 
independent 

of 𝑋!

Independent RVs approach ❌

𝑌 = 𝑋 + 𝑋
𝑋 + 𝑋~𝒩 𝜇 + 𝜇, 𝜎% + 𝜎% ?
𝑌~𝒩 2𝜇, 2𝜎% ?

⚠

Let 𝑋~𝒩(𝜇, 𝜎&).
If 𝑌 = 𝑎𝑋 + 𝑏,

then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎&𝜎&).

Let 𝑋(~𝒩 𝜇(, 𝜎(& , 𝑋&~𝒩 𝜇&, 𝜎&&
be independent.

Then 𝑌 = 𝑋( + 𝑋&~𝒩(𝜇( + 𝜇&, 𝜎(& + 𝜎&&)

𝑌 = 2𝑋

Linear transform approach

𝑌~𝒩(2𝜇, 4𝜎%)

✅

For independent 𝑋(~𝒩 𝜇(, 𝜎(& , 𝑋&~𝒩 𝜇&, 𝜎&& ,
𝑎𝑋( + 𝑏𝑋& + 𝑐~𝒩 𝑎𝜇( + 𝑏𝜇& + 𝑐, 𝑎&𝜎(& + 𝑏&𝜎&&


