Table of Contents

- 2 Discrete Conditional Distributions
- 9 Conditional Expectation
- 15 Law of Total Expectation

14: Conditional Expectation

Jerry Cain February 9, 2024

Lecture Discussion on Ed

Discrete conditional distributions

Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

For discrete random variables X and Y, the conditional PMF of X given Y is

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Different notation, same idea:

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Discrete probabilities of CS109

Each student responds with:

Year Y

- 1: Freshmen and Sophomores
- 2: Juniors and Seniors
- 3: Graduate Students and SCPD

Mood T:

- **−1:** ⊜
- 0: 😐
- 1: 😂

Joint PMF T = -1.06 .01 .01 T = 0.29 .14 .09 T=1.30 .08 .02

$$P(Y = 3, T = 1)$$

Joint PMFs sum to 1.

Discrete probabilities of CS109

The below are **conditional probability** tables for conditional PMFs

(A)
$$P(Y = y | T = t)$$
 and (B) $P(T = t | Y = y)$.

- 1. Which is which?
- 2. What's the missing probability?

	Joint PMF		
	Y = 1	Y = 2	Y = 3
T = -1	.06	.01	.01
T = 0	.29	.14	.09
T = 1	.30	.08	.02

Discrete probabilities of CS109

The below are **conditional probability tables** for conditional PMFs

(A)
$$P(Y = y | T = t)$$
 and (B) $P(T = t | Y = y)$.

 Joint PMF

 Y = 1 Y = 2 Y = 3

 T = -1 .06
 .01
 .01

 T = 0 .29
 .14
 .09

 T = 1 .30
 .08
 .02

- Which is which?
- 2. What's the missing probability?

(B)
$$P(T = t | Y = y)$$

 $Y = 1 Y = 2 Y = 3$
 $T = -1$.09 .04 .08
 $T = 0$.45 .61 .75
 $T = 1$.46 .35 .17

(A)
$$P(Y = y | T = t)$$

 $Y = 1 \ Y = 2 \ Y = 3$
 $T = -1$.75 .125 .125
 $T = 0$.56 .27 .17
 $T = 1$.75 .2 .05

.30/(.06+.29+.30)

Conditional PMFs also sum to 1 conditioned on different events!

Quick check

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Number or function?

1.
$$P(X = 2|Y = 5)$$

2.
$$P(X = x | Y = 5)$$

3.
$$P(X = 2|Y = y)$$

4.
$$P(X = x | Y = y)$$

True or false?

$$\sum_{x} P(X = x | Y = 5) = 1$$

6.
$$\sum_{y} P(X = 2|Y = y) = 1$$

7.
$$\sum_{x} \sum_{y} P(X = x | Y = y) = 1$$

8.
$$\sum_{x} \left(\sum_{y} P(X = x | Y = y) P(Y = y) \right) = 1$$

Quick check

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Number or function?

1.
$$P(X = 2|Y = 5)$$

2.
$$P(X = x | Y = 5)$$

1-D function

3.
$$P(X = 2|Y = y)$$

1-D function

4.
$$P(X = x | Y = y)$$

2-D function

True or false?

5.
$$\sum_{x} P(X = x | Y = 5) = 1$$
 true

6.
$$\sum_{y} P(X = 2|Y = y) = 1$$
 false

7.
$$\sum_{x} \sum_{y} P(X = x | Y = y) = 1$$
 false

8.
$$\sum_{x} \left(\sum_{y} P(X = x | Y = y) P(Y = y) \right) = 1$$
 true

Conditional Expectation

Conditional expectation

Recall the the conditional PMF of X given Y = y:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

The conditional expectation of X given Y = y is

$$E[X|Y = y] = \sum_{x} xP(X = x|Y = y) = \sum_{x} xp_{X|Y}(x|y)$$

It's been so long, our dice friends

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$$

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let $S = \text{value of } D_1 + D_2$.

1. What is
$$E[S|D_2 = 6]$$
? $E[S|D_2 = 6] = \sum_{x} xP(S = x|D_2 = 6)$ $= \left(\frac{1}{6}\right)(7 + 8 + 9 + 10 + 11 + 12)$ $= \frac{57}{6} = 9.5$

Intuitively: $6 + E[D_1] = 6 + 3.5 = 9.5$

Let's prove this!

Properties of conditional expectation

LOTUS:

$$E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y)$$

Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_i \mid Y = y\right] = \sum_{i=1}^{n} E[X_i \mid Y = y]$$

3. Law of total expectation (in, like, three slides)

It's been so long, our dice friends

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$$

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let $S = \text{value of } D_1 + D_2$.
- 1. What is $E[S|D_2 = 6]$?
- 2. What is $E[S|D_2]$?
 - A. A function of S
 - B. A function of D_2
 - C. A number
- 3. Give an expression for $E[S|D_2]$.

 $\frac{57}{6} = 9.5$

It's been so long, our dice friends

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$$

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let $S = \text{value of } D_1 + D_2$.
- 1. What is $E[S|D_2 = 6]$?

- A function of S \mathbb{B} A function of D_2 C. A number
- 3. Give an expression for $E[S|D_2]$.

$$\frac{57}{6} = 9.5$$

$$\begin{split} E[S|D_2 = d_2] &= E[D_1 + d_2|D_2 = d_2] \\ &= \sum_{d_1} (d_1 + d_2) P(D_1 = d_1|D_2 = d_2) \\ &= \sum_{d_1} d_1 P(D_1 = d_1) + d_2 \sum_{d_1} P(D_1 = d_1) \end{split} \begin{subarray}{l} (D_1 = d_1, D_2 = d_2) \\ &= D(D_1) + D(D_1) \end{split} \begin{subarray}{l} (D_1 = d_1) + (D_1) + (D$$

Law of Total Expectation

Properties of conditional expectation

LOTUS:

$$E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y)$$

Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i} \mid Y = y]$$

3. Law of total expectation:

$$E[X] = E[E[X|Y]]$$
 what?

Proof of Law of Total Expectation

E[X] = E[E[X|Y]]

$$E[E[X|Y]] = E[g(Y)] = \sum_{y} P(Y = y)E[X|Y = y]$$
 (LOTUS, $g(Y) = E[X|Y]$)
$$= \sum_{y} P(Y = y) \sum_{x} xP(X = x|Y = y)$$
 (def of conditional expectation)
$$= \sum_{y} \left(\sum_{x} xP(X = x|Y = y)P(Y = y)\right) = \sum_{y} \left(\sum_{x} xP(X = x, Y = y)\right)$$
 (chain rule)
$$= \sum_{x} \sum_{y} xP(X = x, Y = y) = \sum_{x} x \sum_{y} P(X = x, Y = y)$$
 (switch order of summations)
$$= \sum_{x} xP(X = x)$$
 (marginalization)
$$= E[X]$$

$$E[E[X|Y]] = \sum_{y} P(Y = y)E[X|Y = y] = E[X]$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute E[X] as follows:

- Compute expectation of X given some value of Y = y
- Repeat step 1 for all values of Y
- Compute a weighted sum (where weights are P(Y = y))

```
def recurse():
  if random.random() < 0.5:</pre>
    return 3
  else: return 2 + recurse()
```

Useful for analyzing recursive code.

```
E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)
```

```
def recurse():
  # equally likely values 1,2,3
  x = np.random.choice([1,2,3])
  if x == 1: return 3
  elif x == 2: return 5 + recurse()
  else: return 7 + recurse()
```

Let Y = return value of recurse(). What is E[Y]?

```
E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)
```

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if x == 1: return 3
    elif x == 2: return 5 + recurse()
    else: return 7 + recurse()
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$
 $E[Y|X = 1] = 3$
When $X = 1$, return 3.

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if x == 1: return 3
    elif x == 2: return 5 + recurse()
    else: return 7 + recurse()
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$

$$E[Y|X = 1] = 3$$

What is
$$E[Y|X=2]$$
?

- A. E[5] + Y
- B. E[5 + Y] = 5 + E[Y]
- C. 5 + E[Y|X = 2]


```
If Y discrete
E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)
```

```
def recurse():
  # equally likely values 1,2,3
  x = np.random.choice([1,2,3])
  if x == 1: return 3
  elif x == 2: return 5 + recurse()
  else: return 7 + recurse()
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + \underbrace{E[Y|X = 2]}P(X = 2) + E[Y|X = 3]P(X = 3)$$
 $E[Y|X = 1] = 3$ When $X = 2$, return 5 +

a future return value of recurse().

What is E[Y|X=2]?

- A. E[5] + Y
- B. E[5 + Y] = 5 + E[Y]
- C. 5 + E[Y|X = 2]

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

```
def recurse():
  # equally likely values 1,2,3
  x = np.random.choice([1,2,3])
  if x == 1: return 3
  elif x == 2: return 5 + recurse()
  else: return 7 + recurse()
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$

$$E[Y|X = 1] = 3$$
 $E[Y|X = 2] = E[5 + Y]$ When $X = 3$, return

7 + a future return value of recurse().

$$E[Y|X = 3] = E[7 + Y]$$

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

```
def recurse():
  # equally likely values 1,2,3
  x = np.random.choice([1,2,3])
  if x == 1: return 3
  elif x == 2: return 5 + recurse()
  else: return 7 + recurse()
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$

$$E[Y|X = 1] = 3 \qquad E[Y|X = 2] = E[5 + Y] \qquad E[Y|X = 3] = E[7 + Y]$$

$$E[Y] = 3(1/3) \qquad + (5 + E[Y])(1/3) \qquad + (7 + E[Y])(1/3)$$

E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y]

E[Y] = 15

On your own: What is Var(Y)?

Independent RVs, defined another way

If X and Y are independent discrete random variables, then $\forall x, y$:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y)}{P(Y = y)} = P(X = x)$$
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Note for conditional expectation, independent X and Y implies

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y) = \sum_{x} x p_{X}(x) = E[X]$$

Random number of random variables

indep X, YE[X|Y=y]=E[X]

Suppose you have a website: **zerothworldproblems.com**. Let:

X = # of people per day who visit your site. $X \sim \text{Bin}(100, 0.5)$

• $Y_i = \#$ of minutes spent per day by visitor $i = Y_i \sim Poi(8)$

• X and all Y_i are independent. The time spent by all visitors per day is $W = \sum_{i=1}^{X} Y_i$. What is E[W]?

Random number of random variables

Suppose you have a website: **zerothworldproblems.com**. Let:

- X = # of people per day who visit your site. $X \sim \text{Bin}(100,0.5)$
- $Y_i = \#$ of minutes spent per day by visitor i. $Y_i \sim Poi(8)$
- X and all Y_i are independent.

The time spent by all visitors per day is $W = \sum_{i=1}^{n} Y_i$. What is E[W]?

$$E[W] = E\left[\sum_{i=1}^{X} Y_i\right] = E\left[E\left[\sum_{i=1}^{X} Y_i \mid X\right]\right]$$

$$= E[XE[Y_i]]$$

$$= E[Y_i]E[X]$$
 (scalar $E[Y_i]$)

$$= 8 \cdot 50$$

Suppose
$$X = x$$
.

$$E\left[\sum_{i=1}^{x} Y_i \mid X = x\right] = \sum_{i=1}^{x} E[Y_i \mid X = x]$$
 (linearity)

$$=\sum_{i=1}^{N}E[Y_{i}]$$

$$= xE[Y_i]$$

(independence)

Breaking News

Before You Go! CS109 Challenge

Do something cool and creative with probability!

Grand Prize:

All exams replaced with 100% **All Serious Entries:**

> Extra credit (between %0.5 and 2% added to overall average)

Optional Proposal: Sun. 02/25, 11:59pm Due: Sat. 03/09, 11:59pm

https://cs109.stanford.edu/handouts/challenge.html